Статью подготовили специалисты образовательного сервиса Zaochnik.
Отличительные характеристики бактериального фотосинтеза: смысл и особенности процесса
- 25 мая 2023
- 5 минут
- 1 230
Отличительные характеристики бактериального фотосинтеза
Бактерии как форма живых организмов
Представим бактериальный фотосинтез кратко.
Отдельным царством живых организмов являются бактерии или дробянки. Это прокариоты — то есть, первичноядерные живые организмы. От других организмов они отличаются тем, что в их строении отсутствует оформленное ядро: ядерное вещество у них располагается в толще цитоплазмы.
Практические все бактерии являются гетеротрофами. Они способны разлагать органические вещества до более простых соединений. Однако некоторые бактерии являются автотрофами. Отдельные их представители — это хемосинтетики, которые получают энергию за счет различных химических реакций.
Есть и бактерии со способностью к фотосинтезу. Одно из последних открытий — механизм бесхлорофильного фотосинтеза у бактерий.
Пример бесхлорофильного фотосинтеза — фотосинтез галофильных архей:
Смысл процесса фотосинтеза у бактерий
Результатом фотосинтеза являются углеводы, образованные из оксида углерода и воды. Также происходит образование богатых на энергетические связи молекул АТФ. Как побочный эффект реакций можно отметить выделение кислорода.
Светочувствительные (фотосинтезирующие) пигменты — специальные соединения белковой природы, благодаря которым и происходит процесс фотосинтеза.
В качестве таких пигментов выступают зеленые хлорофиллы, желтые каротиноиды, синие и красные фикобилины.
Растения содержат эти пигменты в пластидах или хлоропластах. У бактерий же нет пластид, поэтому пигменты находятся в светочувствительных органах — хроматофорах.
Особенности процесса фотосинтеза у бактерий
Есть бактерии со способностью поглощать энергию солнечного света — это отдельные пигментсодержащие серобактерии. С помощью этой энергии происходит расщепление находящегося в их организмах сероводорода и получение, таким образом, атомов водорода для восстановления соответствующих соединений.
Этот процесс очень схож с фотосинтезом зеленых растений. Единственное отличие заключается в том, что образование водорода у бактерий происходит в результате распада сероводорода (реже карбоновых кислот), а у растений — в результате распада воды. И там, и там водород отщепляется вследствие поглощения энергии солнечных лучей.
Бесхлорофильный тип фотосинтеза не предполагает образование в клетках восстановительных эквивалентов, которые нужны для поглощения и усвоения бактерий углекислого газа. По этой причине в случае бесхолорофильного фотосинтеза оксид углерода не поглощается из атмосферы, а свободный кислород не выделяется. Происходит только запасание энергии солнечного излучения — в виде макроэргических связей молекул АТФ.
АТФ (аденозинтрифосфорная кислота) и НАДФ.Н (никотинамидадениндинуклеофосфат, окисленная форма) — это основные продукты бактериального фотосинтеза, запасающие энергию.
Представим суммарное уравнение бактериального фотосинтеза:
Нельзя сказать, что биологическое значение бактериального фотосинтеза и хемосинтеза для нашей планеты очень большое. Если говорить о значении фотосинтеза кратко, то важно обозначить, что хемосинтезирующие бактерии важны в процессе обеспечения процесса круговорота серы в природе. Сера поглощается растениями в виде солей, восстанавливается и включается в состав белковых молекул в результате процессов биосинтеза.
Когда растительные и животные организмы отмирают, их разлагают гнилостные бактерии. Как результат процессов гниения — включение серы в состав образующегося сероводорода. Происходит окисление сероводорода серобактериями до свободной серы (либо серной кислоты). Она образует в почве сульфаты, доступные для растений. Происходит повторение этого цикла.
Хемосинтез как способ накопления органической массы с помощью автотрофных организмов не имеет большое значения в масштабах планеты.