Автор статьи

Статью подготовили специалисты образовательного сервиса Zaochnik

Особенности системы компактизации хромосом и ее разновидности

Содержание:
  1. Особенности системы компактизации хромосом
    1. Первый уровень
    2. Второй уровень
    3. Третий уровень
  2. Виды компактизации ДНК

Особенности системы компактизации хромосом

Компактизация ДНК представляет собой процесс «укладки» ДНК внутри хромосом.

Определение 1

Под хромосомами понимают ядерные структуры, содержащие в себе наследственную информацию.

Хромосомы состоят из двух плечей, соединенных хроматидой. Внутри клеток человека общая длина ДНК примерно равна 2 метрам. Диаметр ядра клетки равен приблизительно 7 мкм. Поскольку каждая хромосома представлена отдельной молекулой ДНК, компактизация ДНК составляет свыше 6 тысяч раз.

Такая «укладка» осуществляется в несколько уровней.

Первый уровень

Первый уровень компактизации хромосом получил название нуклеосомного. При находящимся под действием нуклеазы хроматине происходит распадение ДНК: в этом случае она состоит из регулярно повторяющихся структур. В качестве структур выступают 8 молекул белков-гистонов, которые намотаны на октамер ДНК. Такой комплекс называют нуклеосомой. В такой нуклеосоме гистонами образуется белковая основа-сердцевина. На ее поверхности размещаются примерно 2 витка ДНК.

Между нуклеосомами остается линкер — это участок, который соединяет две соседние нуклеосомы. Этот уровень компактизации ДНК нередко называют «бусинами на нитке», где под бусинами понимают нуклеосомы, а под ниткой — ДНК. Диаметр нуклеосомы составляет приблизительно 11 нм. Этому уровню компактизации отводится структурная роль и функция обеспечения плотности упаковки ДНК.

Второй уровень

Второй уровень компактизации хромосом составляет уже 30 нм и получает вид фибриллы. В митотических хромосомах встречаются фибриллы диаметром 25-30 нм. Здесь же обнаруживается соленоидный тип нуклеосом: он имеет вид нити с витками и спиральным шагом в 10 нм. На каждом из витков происходит образование фибриллы с центральной полостью. Хроматин, входящий в состав ядер этих клеток, обладает фибриллами по 25 нм. Благодаря этому типу укладки ДНК осуществляется уплотнение ее в сорок раз.

Третий уровень

Третий уровень компактизации ДНК имеет вид петлевых доменов. Его называют хромомерным. Это уровень высшего ранга. Внутри этих уровней происходит связывание специфических белков с ДНК. В результате образуются большие петли. В отдельных местах находятся сгустки конденсированного хроматина, розетковидные образования. Они состоят из множества петель 30-нм фибрилл, которые соединяются в плотном центре.

В среднем такие розетки достигают в размерах 100-150 нм.

Определение 2

Розетки фибрилл хроматина получили название хромомеры.

Хромомер состоит из нескольких нуклеосом или петель, связанных в одном центре. Наблюдается связывание хромомеров один с другим и с отдельными участками нуклеосомного хроматина. Благодаря этому можно говорить о структурной компактизации хроматина и организации функциональных хромосомных единиц: репликонов и генов, которые транскрибируются в пределах хроматина.

Дальнейшая компактизация хромомеров обеспечивает более плотную компактизацию ДНК на хроматидном и хромосомном уровнях. Этот процесс происходит в клетках, которые делятся, и которые содержат плотные хромосомы.

Такую компактизацию можно наблюдать даже при помощи светового микроскопа — она представляет собой отдельные образования. В случае неделения клетки, происходит деспирализация хромосом: границы между ними становятся не видны. Диффузный материал этих хромосом называют хроматином.

Виды компактизации ДНК

Если посмотреть на растительную клетку при помощи электронной микрофотографии, то можно обнаружить темные и плотные участки гетерохроматина и светлые части — это эухроматин. При транскрипции происходит активизация эухроматина, а вот гетерохроматин не активизируется: это молчащие участки ДНК.

Кроме этого, выделяют теломеры и центромеры (структурные элементы хромосом), в которых отсутствуют гены. Центромеры и теломеры — составные компоненты облигатного или обязательного гетерохроматина.

Замечание 1

Образование факультативного гетерохроматина в клетке происходит без обязательной основы.

С учетом этого выделяют следующие уровни компактизации хроматина:

  • нуклеосомный. Это 2,5 витка двойной спирали ДНК, которая намотана на белковый корд;
  • нуклеомерный или со структурой суперспирали. В ее образовании участвует гистоновый белок. Как результат — образование хроматиновой фибриллы. Ее толщина равна 30 нм. То есть, ДНК компактизирована в 40 раз;
  • хромомерный или петельный белок. Он сцепляется между собой при помощи негистонового белка. Толщина этой структуры уже составляет 300 нм;
  • хромонемный белок. Его образование связано со сближением хромомеров по всей длине. Происходит включение в нее одной огромной молекулы ДНК;
  • хроматидный белок. Он складывается несколько раз и образует хроматидное тело. В результате репликации в ДНК присутствует примерно 2 хроматиды;
  • хромосомный белок, состоящий из 2 хроматид. Центромера соединяет хроматиды. В ходе деления клетки происходит расхождение хроматид, которые попадают в разные дочерние клетки.

Как видно, хроматин меняет собственную организацию, сохраняя, при этом, преемственность в поколениях. В интерфазе происходит его выделения в виде глыбок, рассеянных в нуклеоплазме ядра. При переходе клетки в митоз (в первую очередь в метафазе) хроматин получает вид интенсивно окрашенных телец — хромосом.

Такие формы существования воспринимают как 2 полярных варианта структурной организации хроматина.

Их связывание происходит в митотическом цикле при помощи своеобразных взаимных переходов. Это подтверждают и эмпирические данные, которые ученые получают в случае использования метода электронной микроскопии.

Замечание 2

Основа метафазной и интерфазной структур — элементарная нитчатая структура белка.

Неодинаковый уровень компактизации хромосом крайне важен. Выделяют конститутивный (структурный) и факультативный гетерохроматин. Предполагается, что его функция — поддержка общей структуры ядра и прикрепление хроматина к ядерной оболочке, а также регулирование активности отдельных клеточных структур.

Кариотип — это совокупность всех хромосом, которая включает в себя все молекулы ДНК, содержащие информацию о признаках организма. Если количество хромосом в кариотипе меняется, то приводит к различным заболеваниям.

Самое распространенное хромосомное заболевание человека — синдром Дауна.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Сохранить статью удобным способом

Навигация по статьям

Наши социальные сети
Не получается написать работу самому?
Доверь это кандидату наук!
Связаться через
Я принимаю условия пользовательского соглашения и  политики приватности, а также даю свое согласие на обработку моих персональных данных
Выполненные работы по биологии
  • Биология

    ответить на вопросы предмет биомеханика

    • Вид работы:

      Контрольная работа

    • Выполнена:

      28 января 2024

    • Стоимость:

      1 000 руб.

    Заказать такую же работу
  • Биология

    Красная кига ХМАО Югры

    • Вид работы:

      Школьный проект

    • Выполнена:

      24 января 2024

    • Стоимость:

      2 200 руб.

    Заказать такую же работу
  • Биология

    Теория внеземного происхождения человека

    • Вид работы:

      Реферат

    • Выполнена:

      18 января 2024

    • Стоимость:

      1 900 руб.

    Заказать такую же работу
  • Биология

    Забота о потомстве у животных

    • Вид работы:

      Курсовая работа

    • Выполнена:

      15 января 2024

    • Стоимость:

      3 700 руб.

    Заказать такую же работу
  • Биология

    тема сельскохозяйственные культуры

    • Вид работы:

      Школьный проект

    • Выполнена:

      15 января 2024

    • Стоимость:

      2 100 руб.

    Заказать такую же работу
  • Биология

    Железодефицитная анемия у подростков

    • Вид работы:

      Презентация (PPT, PPS, Prezi)

    • Выполнена:

      14 января 2024

    • Стоимость:

      2 900 руб.

    Заказать такую же работу