Автор статьи

Статью подготовили специалисты образовательного сервиса Zaochnik.

Степенные выражения (выражения со степенями) и их преобразование

Содержание:

Рассмотрим тему преобразования выражений со степенями, но прежде остановимся на ряде преобразований, которые можно проводить с любыми выражениями, в том числе со степенными. Мы научимся раскрывать скобки, приводить подобные слагаемые, работать с основанием и показателем степени, использовать свойства степеней.

Что представляют собой степенные выражения?

В школьном курсе мало кто использует словосочетание «степенные выражения», зато этот термин постоянно встречается в сборниках для подготовки к ЕГЭ. В большинства случаев словосочетанием обозначаются выражения, которые содержат в своих записях степени. Это мы и отразим в нашем определении.

Определение 1

Степенное выражение – это выражение, которое содержит степени.

Приведем несколько примеров степенных выражений, начиная со степени с натуральным показателем и заканчивая степенью с действительным показателем.

Самыми простыми степенными выражениями можно считать степени числа с натуральным показателем: 32, 75+1, (2+1)5, (0,1)4, 2233, 3·a2a+a2, x31, (a2)3. А также степени с нулевым показателем: 50, (a+1)0, 3+523,20. И степени с целыми отрицательными степенями: (0,5)2+(0,5)-22.

Чуть сложнее работать со степенью, имеющей рациональный  и иррациональный показатели: 26414-3·3·312, 23,5·2-22-1,5, 1a14·a12-2·a-16·b12, xπ·x1-π, 233+5.

В качестве показателя может выступать переменная 3x-54-7·3x-58 или логарифм x2·lgx5·xlgx.

С вопросом о том, что такое степенные выражения, мы разобрались. Теперь займемся их преобразованием.

Основные виды преобразований степенных выражений

В первую очередь мы рассмотрим основные тождественные преобразования выражений, которые можно выполнять со степенными выражениями.

Пример 1

Вычислите значение степенного выражения 23·(4212).

Решение

Все преобразования мы будем проводить с соблюдением порядка выполнения действий. В данном случае начнем мы с выполнения действий в скобках: заменим степень на цифровое значение и вычислим разность двух чисел. Имеем 23·(4212)=23·(1612)=23·4.

Нам остается заменить степень 23 ее значением 8 и вычислить произведение 8·4=32. Вот наш ответ.

Ответ: 23·(4212)=32.

Пример 2

Упростите выражение со степенями 3·a4·b71+2·a4·b7.

Решение

Данное нам в условии задачи выражение содержит подобные слагаемые, которые мы можем привести: 3·a4·b71+2·a4·b7=5·a4·b71.

Ответ: 3·a4·b71+2·a4·b7=5·a4·b71.

Пример 3

Представьте выражение со степенями 9-b3·π-12 в виде произведения.

Решение

Представим число 9 как степень 32 и применим формулу сокращенного умножения:

9-b3·π-12=32-b3·π-12==3-b3·π-13+b3·π-1

Ответ: 9-b3·π-12=3-b3·π-13+b3·π-1.

А теперь перейдем к разбору тождественных преобразований, которые могут применяться именно в отношении степенных выражений. 

Работа с основанием и показателем степени

Степень в основании или показателе может иметь и числа, и переменные, и некоторые выражения. Например, (2+0,3·7)53,7 и (a·(a+1)a2)2·(x+1). Работать с такими записями сложно. Намного проще заменить выражение в основании степени или выражение в показателе тождественно равным выражением.

Проводятся преобразования степени и показателя по известным нам правилам отдельно друг от друга. Самое главное, чтобы в результате преобразований получилось выражение, тождественное исходному.

Цель преобразований – упростить исходное выражение или получить решение задачи. Например, в примере, который мы привели выше, (2+0,3·7)53,7 можно выполнить действия для перехода к степени 4,11,3. Раскрыв скобки, мы можем привести подобные слагаемые в основании степени (a·(a+1)a2)2·(x+1) и получить степенное выражение более простого вида a2·(x+1).

Использование свойств степеней

Свойства степеней, записанные в виде равенств, являются одним из главных инструментов преобразования выражений со степенями. Приведем здесь основные из них, учитывая, что a и b – это любые положительные числа, а r и s - произвольные действительные числа:

Определение 2
  • ar·as=ar+s;
  • ar:as=ars;
  • (a·b)r=ar·br;
  • (a:b)r=ar:br;
  • (ar)s=ar·s.

В тех случаях, когда мы имеем дело с натуральными, целыми, положительными показателями степени, ограничения на числа a и b могут быть гораздо менее строгими. Так, например, если рассмотреть равенство am·an=am+n, где m и n – натуральные числа, то оно будет верно для любых значений a, как положительных, так и отрицательных, а также для a=0.

Применять свойства степеней без ограничений можно в тех случаях, когда основания степеней положительные или содержат переменные, область допустимых значений которых такова, что на ней основания принимают лишь положительные значения. Фактически, в рамках школьной программы по математике задачей учащегося является выбор подходящего свойства и правильное его применение.

При подготовке к поступлению в Вузы могут встречаться задачи, в которых неаккуратное применение свойств будет приводить к сужению ОДЗ и другим сложностям с решением. В данном разделе мы разберем всего два таких случая. Больше информации по вопросу можно найти в теме «Преобразование выражений с использованием свойств степеней».

Пример 4

Представьте выражение a2,5·(a2)3:a5,5 в виде степени с основанием a.

Решение

Для начала используем свойство возведения в степень и преобразуем по нему второй множитель (a2)3 . Затем используем свойства умножения и деления степеней с одинаковым основанием:

a2,5·a6:a5,5= a2,56:a5,5=a3,5:a5,5= a3,5(5,5)=a2.

Ответ: a2,5·(a2)3:a5,5=a2.

Преобразование степенных выражений согласно свойству степеней может производиться как слева направо, так и в обратном направлении.

Пример 5

Найти значение степенного выражения 313·713·2123.

Решение

Если мы применим равенство (a·b)r=ar·br, справа налево, то получим произведение вида 3·713·2123 и дальше 2113·2123. Сложим показатели при умножении степеней с одинаковыми основаниями: 2113·2123=2113+23=211=21.

Есть еще один способ провести преобразования:

313·713·2123=313·713·(3·7)23=313·713·323·723==313·323·713·723=313+23·713+23=31·71=21

Ответ: 313·713·2123=31·71=21

 

Пример 6

Дано степенное выражение a1,5a0,56, введите новую переменную t=a0,5.

Решение

Представим степень a1,5 как a0,5·3 . Используем свойство степени в степени (ar)s=ar·s справа налево и получим (a0,5)3: a1,5a0,56=(a0,5)3a0,56. В полученное выражение можно без проблем вводить новую переменную t=a0,5: получаем t3t6.

Ответ: t3t6.

Преобразование дробей, содержащих степени

Обычно мы имеем дело с двумя вариантами степенных выражений с дробями: выражение представляет собой дробь со степенью или содержит такую дробь. К таким выражениям применимы все основные преобразования дробей без ограничений. Их можно сокращать, приводить к новому знаменателю, работать отдельно с числителем и знаменателем. Проиллюстрируем это примерами.

Пример 7

Упростить степенное выражение 3·523·513-5-231+2·x2-3-3·x2.

Решение

Мы имеем дело с дробью, поэтому проведем преобразования и в числителе, и в знаменателе:

3·523·513-5-231+2·x2-3-3·x2=3·523·513-3·523·5-23-2-x2==3·523+13-3·523+-23-2-x2=3·51-3·50-2-x2

Поместим минус перед дробью для того, чтобы изменить знак знаменателя: 12-2-x2=-122+x2

Ответ:  3·523·513-5-231+2·x2-3-3·x2=-122+x2

Дроби, содержащие степени, приводятся к новому знаменателю точно также, как и рациональные дроби. Для этого необходимо найти дополнительный множитель и умножить на него числитель и знаменатель дроби. Подбирать дополнительный множитель необходимо таким образом, чтобы он не обращался в нуль ни при каких значениях переменных из ОДЗ переменных для исходного выражения.

Пример 8

 

Приведите дроби к новому знаменателю: а) a+1a0,7 к знаменателю a, б) 1x23-2·x13·y16+4·y13 к знаменателю x+8·y12.

Решение

а) Подберем множитель, который позволит нам произвести приведение к новому знаменателю. a0,7·a0,3=a0,7+0,3=a, следовательно, в качестве дополнительного множителя мы возьмем a0,3. Область допустимых значений переменной а включает множество всех положительных действительных чисел. В этой области степень a0,3 не обращается в нуль.

Выполним умножение числителя и знаменателя дроби на a0,3:

a+1a0,7=a+1·a0,3a0,7·a0,3=a+1·a0,3a

б) Обратим внимание на знаменатель:

x23-2·x13·y16+4·y13==x132-x13·2·y16+2·y162

Умножим это выражение на x13+2·y16, получим сумму кубов x13 и 2·y16, т.е. x+8·y12. Это наш новый знаменатель, к которому нам надо привести исходную дробь.
 

Так мы нашли дополнительный множитель x13+2·y16. На области допустимых значений переменных x и y выражение x13+2·y16 не обращается в нуль, поэтому, мы можем умножить на него числитель и знаменатель дроби:
1x23-2·x13·y16+4·y13==x13+2·y16x13+2·y16x23-2·x13·y16+4·y13==x13+2·y16x133+2·y163=x13+2·y16x+8·y12

Ответ: а) a+1a0,7=a+1·a0,3a , б) 1x23-2·x13·y16+4·y13=x13+2·y16x+8·y12.  

Пример 9

Сократите дробь: а) 30·x3·(x0,5+1)·x+2·x113-5345·x0,5+12·x+2·x113-53, б) a14-b14a12-b12.

Решение

а) Используем наибольший общий знаменатель (НОД), на который можно сократить числитель и знаменатель. Для чисел 30 и 45 это 15. Также мы можем произвести сокращение на x0,5+1 и на x+2·x113-53.

Получаем:

30·x3·(x0,5+1)·x+2·x113-5345·x0,5+12·x+2·x113-53=2·x33·(x0,5+1)

б) Здесь наличие одинаковых множителей неочевидно. Придется выполнить некоторые преобразования для того, чтобы получить одинаковые множители в числителе и знаменателе. Для этого разложим знаменатель, используя формулу разности квадратов:

a14-b14a12-b12=a14-b14a142-b122==a14-b14a14+b14·a14-b14=1a14+b14

Ответ:  а)30·x3·(x0,5+1)·x+2·x113-5345·x0,5+12·x+2·x113-53=2·x33·(x0,5+1), б) a14-b14a12-b12=1a14+b14.

К числу основных действий с дробями относится приведение к новому знаменателю и сокращение дробей. Оба действия выполняют с соблюдением ряда правил. При сложении и вычитании дробей сначала дроби приводятся к общему знаменателю, после чего проводятся действия (сложение или вычитание) с числителями. Знаменатель остается прежним. Результатом наших действий является новая дробь, числитель которой является произведением числителей, а знаменатель есть произведение знаменателей.

Пример 10

Выполните действия x12+1x12-1-x12-1x12+1·1x12.

Решение

Начнем с вычитания дробей, которые располагаются в скобках. Приведем их к общему знаменателю:

x12-1·x12+1

Вычтем числители:

x12+1x12-1-x12-1x12+1·1x12==x12+1·x12+1x12-1·x12+1-x12-1·x12-1x12+1·x12-1·1x12==x12+12-x12-12x12-1·x12+1·1x12==x122+2·x12+1-x122-2·x12+1x12-1·x12+1·1x12==4·x12x12-1·x12+1·1x12

Теперь умножаем дроби:

4·x12x12-1·x12+1·1x12==4·x12x12-1·x12+1·x12

Произведем сокращение на степень x12, получим 4x12-1·x12+1.

Дополнительно можно упростить степенное выражение в знаменателе, используя формулу разности квадратов: квадратов: 4x12-1·x12+1=4x122-12=4x-1.

Ответ: x12+1x12-1-x12-1x12+1·1x12=4x-1

Пример 11

Упростите степенное выражение x34·x2,7+12x-58·x2,7+13.
Решение

Мы можем произвести сокращение дроби на (x2,7+1)2. Получаем дробь x34x-58·x2,7+1.

Продолжим преобразования степеней икса x34x-58·1x2,7+1. Теперь можно использовать свойство деления степеней с одинаковыми основаниями:  x34x-58·1x2,7+1=x34--58·1x2,7+1=x118·1x2,7+1.

Переходим от последнего произведения к дроби x138x2,7+1.

Ответ: x34·x2,7+12x-58·x2,7+13=x138x2,7+1.

Множители с отрицательными показателями степени в большинстве случаев удобнее переносить из числителя в знаменатель и обратно, изменяя знак показателя. Это действие позволяет упростить дальнейшее решение. Приведем пример: степенное выражение (x+1)-0,23·x-1 можно заменить  на x3·(x+1)0,2.

Преобразование выражений с корнями и степенями

В задачах встречаются степенные выражения, которые содержат не только степени с дробными показателями, но и корни. Такие выражения желательно привести только к корням или только к степеням. Переход к степеням предпочтительнее, так как с ними проще работать. Такой переход является особенно предпочтительным, когда ОДЗ переменных для исходного выражения позволяет заменить корни степенями без необходимости обращаться к модулю или разбивать ОДЗ на несколько промежутков.

Пример 12

Представьте выражение x19·x·x36 в виде степени.

Решение

Область допустимых значений переменной x определяется двумя неравенствами  x0  и x·x30 ,  которые задают множество [0, +).

На этом множестве мы имеем право перейти от корней к степеням: 

x19·x·x36=x19·x·x1316

Используя свойства степеней, упростим полученное степенное выражение.

x19·x·x1316=x19·x16·x1316=x19·x16·x1·13·6==x19·x16·x118=x19+16+118=x13

Ответ: x19·x·x36=x13.

Преобразование степеней с переменными в показателе

Данные преобразования достаточно просто произвести, если грамотно использовать свойства степени. Например, 52·x+13·5x·7x14·72·x1=0.

Мы можем заменить произведением степени, в показателях которых находится сумма некоторой переменной и числа. В левой части это можно проделать с первым и последним слагаемыми левой части выражения:

52·x·513·5x·7x14·72·x·71=0, 5·52·x3·5x·7x2·72·x=0.

Теперь поделим обе части равенства на 72·x. Это выражение на ОДЗ переменной x принимает только положительные значения:

5·5-3·5x·7x-2·72·x72·x=072·x,5·52·x72·x-3·5x·7x72·x-2·72·x72·x=0,5·52·x72·x-3·5x·7x7x·7x-2·72·x72·x=0

Сократим дроби со степенями, получим: 5·52·x72·x-3·5x7x-2=0.

Наконец, отношение степеней с одинаковыми показателями заменяется степенями отношений, что приводит к уравнению 5·572·x-3·57x-2=0 , которое равносильно 5·57x2-3·57x-2=0.

Введем новую переменную t=57x, что сводит решение исходного показательного уравнения к решению квадратного уравнения 5·t23·t2=0.

Преобразование выражений со степенями и логарифмами

Выражения, содержащие с записи степени и логарифмы, также встречаются в задачах. Примером таких выражений могут служить: 141-5·log23 или log3279+5(1-log35)·log53. Преобразование подобных выражений проводится с использованием разобранных выше подходов и свойств логарифмов, которые мы подробно разобрали в теме «Преобразование логарифмических выражений».

Навигация по статьям

Выполненные работы по математике
  • Математика

    Линейная алгебра и геометрия Теория вероятностей

    • Вид работы:

      Контрольная работа

    • Выполнена:

      17 мая 2012 г.

    • Стоимость:

      600 руб

    Заказать такую же работу
  • Математика

    теория вероятности

    • Вид работы:

      Контрольная работа

    • Выполнена:

      16 апреля 2012 г.

    • Стоимость:

      500 руб

    Заказать такую же работу
  • Математика

    теория вероятности

    • Вид работы:

      Контрольная работа

    • Выполнена:

      16 апреля 2012 г.

    • Стоимость:

      500 руб

    Заказать такую же работу
  • Математика

    исследование функции и построение графика

    • Вид работы:

      Контрольная работа

    • Выполнена:

      27 марта 2012 г.

    • Стоимость:

      200 руб

    Заказать такую же работу
  • Математика

    две контрольных работы

    • Вид работы:

      Контрольная работа

    • Выполнена:

      25 января 2012 г.

    • Стоимость:

      1 100 руб

    Заказать такую же работу
  • Математика

    контрольная работа

    • Вид работы:

      Контрольная работа

    • Выполнена:

      24 января 2012 г.

    • Стоимость:

      700 руб

    Заказать такую же работу