Автор статьи

Статью подготовили специалисты образовательного сервиса Zaochnik.

Затухающие колебания в контуре и их уравнение

Содержание:

Определение 1

Существуют колебания в системе без источника энергии, называемые затухающими. Рассмотрим реальный контур с сопротивлением не равным нулю. Для примера используют контур с включенным сопротивлением R, с емкостью конденсатора C, с катушкой индуктивности L, изображенный на рисунке 1. Колебания, происходящие в нем, - затухающие.

Затухающие колебания в контуре и их уравнение

Рисунок 1

Именно наличие сопротивления становится главной причиной их затухания. Данный процесс возможен посредствам потерь энергии на выделение джоулева тепла. Аналог сопротивления в механике – действие сил трения.

Характеристики затухающих колебаний

Затухающие колебания характеризуют коэффициентом затухания β. Применив второй закон Ньютона, получим:

ma=-kx-yv,d2xdt2+rmdxdt+kmx=0,ω02=km,β=r2m.

Из записи видно, что β действительно является характеристикой контура. Реже вместо β применяют декремент затухания δ,

Значение a (t) является амплитудой заряда, силы тока и так далее, δ равняется количеству колебаний, а Ne - период времени уменьшения амплитуды в e раз.

Для RLC контура применима формула с ω частотой.

При небольшой δ1 говорят, что βω0 ω0=1LC - собственная частота, отсюда ωω0.

При рассмотрении затухающих колебаний последовательного контура колебательный контур характеризуется добротностью Q :

Q=1RLC=ω0LR, где R, L и C - сопротивление, индуктивность, емкость, а ω0- частота резонанса. Выражение LC называют характеристическим или волновым сопротивлением. Для параллельного контура формула примет вид:

Q=RLC=Rω0L.

R является входным сопротивлением параллельного контура.

Определение 2

Эквивалентное определение добротности применяется при слабых затуханиях. Его выражают через отношение энергий:

Q=ω0WPd=2πf0WPd, называемое общей формулой.

Уравнения затухающих колебаний

Рассмотрим рисунок 1. Изменение заряда q на конденсаторе в таком контуре описывается дифференциальным уравнением:

q(t)=q0e(-βt)cosωt+a'0=q0e-βtcos(ωt).

Если t=0, то заряд конденсатора становится равным q0, и ток в цепи отсутствует.

Если R>2LC изменения заряда не относят к колебаниям, разряд называют апериодическим.

Значение сопротивления, при котором колебания превращаются в апериодический разряд конденсатора, критическое Rk.

rкр=2LC.

Функция изображается аналогично рисунку 2.

Уравнения затухающих колебаний

Рисунок 2

Пример 1

Записать закон убывания энергии, запасенной в контуре W (t) при W (t=0)=W0 с затухающими колебаниями. Обозначить коэффициент затухания в контуре β, а собственную частоту - ω0.

Решение

Отправная точка решения – это применение формулы изменения заряда на конденсаторе в RLC - контуре:

q(t)=q0e(-βt)cosωt+a'0=q0e-βtcos(ωt).

Предположим, что при t=0, a'0=0. Тогда применим выражение

I=dqdt.

Для нахождения I(t):

I(t)=-ω0q0e(-2βt)sin(ωt+α), где tg α=βω.

Очевидно, что электрическая энергия Wq запишется как:

Wq=q22C=q022Ce(-2βt)cos2(ωt)=W0e(-2βt)cos2(ωt).

Тогда значение магнитной энергии контура Wm равняется:

Wm=L2ω02q02e(-2βt)sin2ωt+a=W0e-2βtsin2ωt+a.

Запись полной энергии будет иметь вид:

W=Wq+Wm=W0e(-2βt)(cos2(ωt)+sin2(ωt+a))==W0e(-2βt)1+βω0sin(2ωt+α).

Где sin α=βω0.

Ответ: W (t)=W0e(-2βt)1+βω0sin (2ωt+a).

Пример 2

Применив результат предыдущего примера, записать выражение для энергии, запасенной в контуре W (t), при медленно затухающих колебаниях. Начертить график убывания энергии.

Решение

Если колебания в контуре затухают медленно, то:

βω01.

Очевидно, выражение энергии, запасенной в контуре, вычислим из

W (t)=W0e(-2βt)1+βω0sin (2ωt+a), предварительно преобразовав до W (t)=W0e(-2βt).

Такое упрощение возможно по причине выполнения условия βω01, sin (2ωt+a)1, что означает βω0sin (2ωt+a)1.

Уравнения затухающих колебаний

Рисунок 3

Ответ: W (t)=W0e(-2βt). Энергия в контуре убывает по экспоненте.

Навигация по статьям

Выполненные работы по физике
  • Физика

    Дистанционный экзамен

    • Вид работы:

      Дистанционный экзамен

    • Выполнена:

      12 сентября 2024 г.

    • Стоимость:

      1 800 руб

    Заказать такую же работу
  • Физика

    выполнить задания

    • Вид работы:

      Контрольная работа

    • Выполнена:

      29 июня 2024 г.

    • Стоимость:

      900 руб

    Заказать такую же работу
  • Физика

    Вариант и вариант

    • Вид работы:

      Контрольная работа

    • Выполнена:

      24 июня 2024 г.

    • Стоимость:

      16 400 руб

    Заказать такую же работу
  • Физика

    Определение коэффициента внутреннего трения жидкости методом Пуазейля

    • Вид работы:

      Лабораторная работа

    • Выполнена:

      20 июня 2024 г.

    • Стоимость:

      4 000 руб

    Заказать такую же работу
  • Физика

    модели атома опыт Резерфорда

    • Вид работы:

      Проектная работа

    • Выполнена:

      18 июня 2024 г.

    • Стоимость:

      1 800 руб

    Заказать такую же работу
  • Физика

    Дистанционный экзамен

    • Вид работы:

      Дистанционный экзамен

    • Выполнена:

      17 июня 2024 г.

    • Стоимость:

      11 200 руб

    Заказать такую же работу