Автор статьи

Статью подготовили специалисты образовательного сервиса Zaochnik.

Законы сложения сил в механике

Содержание:

При воздействии на одно тело нескольких сил одновременно тело начинает двигаться с ускорением, являющимся векторной суммой ускорений, которые бы возникли под воздействием каждой силы по отдельности. К действующим на тело силам, приложенным к одной точке, применяется правило сложения векторов.

Определение 1

Векторная сумма всех сил, одновременно воздействующих на тело, это сила равнодействующая, которая определяется по правилу векторного сложения сил:

R=F1+F2+F3+...+Fn=i=1nFi.

Равнодействующая сила действует на тело также, как и сумма всех действующих на него сил.

Правило параллелограмма и правило многоугольника

Определение 2

Для сложения 2-х сил используют правило параллелограмма (рисунок 1).

Правило параллелограмма и правило многоугольника

Рисунок 1. Сложение 2-х сил по правилу параллелограмма

Выведем формулу модуля равнодействующей силы с помощью теоремы косинусов:

R=F12+F22+2F12F22cos α

Определение 3

При необходимости сложения более 2-х сил используют правило многоугольника: от конца
1-й силы необходимо провести вектор, равный и параллельный 2-й силе; от конца 2-й силы необходимо провести вектор, равный и параллельный 3-й силе и т.д.

Правило параллелограмма и правило многоугольника

Рисунок 2. Сложение сил правилом многоугольника

Конечный вектор, проведенный от точки приложения сил в конец последней силы, по величине и направлению равняется равнодействующей силе. Рисунок 2 наглядно иллюстрирует пример нахождения равнодействующей сил из 4-х сил: F1, F2, F3, F4. Причем суммируемые векторы совсем необязательно должны быть в одной плоскости.

Результат действия силы на материальную точку будет зависеть только от ее модуля и направления. У твердого тела есть определенные размеры. Потому силы с одинаковыми модулями и направлениями вызывают разные движения твердого тела в зависимости от точки приложения.

Определение 4

Линией действия силы называют прямую, проходящую через вектор силы. 

Правило параллелограмма и правило многоугольника

Рисунок 3. Сложение сил, приложенных к различным точкам тела

Если силы приложены к различным точкам тела и действуют не параллельно по отношению друг к другу, тогда равнодействующая приложена к точке пересечения линий действия сил (рисунок 3). Точка будет находиться в равновесии, если векторная сумма всех сил, действующих на нее, равняется 0: i=1nFi=0. В данном случае равняется 0 и сумма проекций данных сил на любую координатную ось.

Разложение вектора силы по направлениям

Определение 5

Разложение сил на две составляющие – это замена одной силы 2-мя, приложенными в той же точке и производящими на тело такое же действие, как и эта одна сила. Разложение сил осуществляется, как и сложение, правилом параллелограмма.

Задача разложения одной силы (модуль и направление которой заданы) на 2, приложенные в одной точке и действующие под углом друг к другу, имеет однозначное решение в следующих случаях, когда известны:

  • направления 2-х составляющих сил;
  • модуль и направление одной из составляющих сил;
  • модули 2-х составляющих сил.
Пример 1

Необходимо разложить силу F на 2 составляющие, находящиеся в одной плоскости с F и направленные вдоль прямых a и b (рисунок 4). Тогда достаточно от конца вектора F провести 2 прямые, параллельные прямым a и b. Отрезок FA и отрезок FB изображают искомые силы.

Разложение вектора силы по направлениям

Рисунок 4. Разложение вектора силы по направлениям

Пример 2

Второй вариант данной задачи – найти одну из проекций вектора силы по заданным векторам силы и 2-й проекции (рисунок 5 а ).

Разложение вектора силы по направлениям

Рисунок 5. Нахождение проекции вектора силы по заданным векторам

Во втором варианте задачи необходимо построить параллелограмм по диагонали и одной из сторон, как в планиметрии. На рисунке 5 б изображен такой параллелограмм и обозначена искомая составляющая F2 силы F.

Итак, 2-й способ решения: прибавим к силе силу, равную -F1 (рисунок 5 в). В итоге получаем искомую силу F.

Пример 3

Три силы F1=1 Н; F2=2 Н; F3= 3 Н приложены к одной точке, находятся в одной плоскости (рисунок 6 а) и составляют углы с горизонталью α=0°; β=60°; γ=30° соответственно. Необходимо найти равнодействующую силу.

Решение

Разложение вектора силы по направлениям

Рисунок 6. Нахождение равнодействующей силы по заданным векторам

Нарисуем взаимно перпендикулярные оси ОХ и OY таким образом, чтобы ось ОХ совпадала с горизонталью, вдоль которой направлена сила F1. Сделаем проекцию данных сил на координатные оси (рисунок 6 б). Проекции F2y и F2x отрицательны. Сумма проекций сил на координатную ось ОХ равняется проекции на данную ось равнодействующей: F1+F2cosβ-F3cosγ=Fx=4-332-0,6 Н.

Точно также для проекций на ось OY: -F2sin β+F3sin γ=Fy=3-232-0,2 Н.

Модуль равнодействующей определим с помощью теоремы Пифагора:

F=Fx2+Fy2=0,36+0,040,64 Н.

Направление равнодействующей найдем при помощи угла между равнодействующей и осью (рисунок 6 в):

tg φ=FyFx=3-234-330,4.

Пример 4

Сила F=1 кН приложена в точке В кронштейна и направлена вертикально вниз (рисунок 7 а). Необходимо найти составляющие данной силы по направлениям стержней кронштейна. Все необходимые данные отображены на рисунке.

Решение

Разложение вектора силы по направлениям

Рисунок 7. Нахождение составляющих силы F по направлениям стержней кронштейна

Дано:

F=1 кН=1000 Н

Пускай стержни прикручены к стене в точках А и С. На рисунке 7 б изображено разложение силы F на составляющие вдоль направлений АВ и ВС. Отсюда понятно, что

F1=Ftg β557 Н;

F2=Fcos β1155 Н.

Ответ: F1=557 Н; F2=1155 Н.

Навигация по статьям

Выполненные работы по физике
  • Физика

    Дистанционный экзамен

    • Вид работы:

      Дистанционный экзамен

    • Выполнена:

      12 сентября 2024 г.

    • Стоимость:

      1 800 руб

    Заказать такую же работу
  • Физика

    выполнить задания

    • Вид работы:

      Контрольная работа

    • Выполнена:

      29 июня 2024 г.

    • Стоимость:

      900 руб

    Заказать такую же работу
  • Физика

    Вариант и вариант

    • Вид работы:

      Контрольная работа

    • Выполнена:

      24 июня 2024 г.

    • Стоимость:

      16 400 руб

    Заказать такую же работу
  • Физика

    Определение коэффициента внутреннего трения жидкости методом Пуазейля

    • Вид работы:

      Лабораторная работа

    • Выполнена:

      20 июня 2024 г.

    • Стоимость:

      4 000 руб

    Заказать такую же работу
  • Физика

    модели атома опыт Резерфорда

    • Вид работы:

      Проектная работа

    • Выполнена:

      18 июня 2024 г.

    • Стоимость:

      1 800 руб

    Заказать такую же работу
  • Физика

    Дистанционный экзамен

    • Вид работы:

      Дистанционный экзамен

    • Выполнена:

      17 июня 2024 г.

    • Стоимость:

      11 200 руб

    Заказать такую же работу