Автор статьи

Статью подготовили специалисты образовательного сервиса Zaochnik.

Сила и плотность тока. Линии тока

Содержание:

Сила тока I для тока, протекающего через некоторую площадь сечения проводника S эквивалентна производной заряда q по времени t и количественно характеризует электрический ток.

Определение 1

Таким образом выходит, что сила тока — это поток заряженных частиц через некоторую поверхность S.

Определение 2

Электрический ток является процессом движения как отрицательных, так и положительных зарядов.

Перенос заряда одного знака в определенную сторону равен переносу заряда, обладающего противоположным знаком, в обратном направлении. В ситуации, когда ток образуется зарядами и положительного, и отрицательного знаков (dq+ и dq), справедливым будет заключение о том, что сила тока равна следующему выражению:

I=dq+dt+dq-dt.

В качестве положительного определяют направление движения положительных зарядов. Ток может быть постоянным, когда ни сила тока, ни его направление не претерпевают изменений с течением времени, или, наоборот, переменным. При условии постоянства, формула силы тока может выражаться в следующем виде:

I=qt,

где сила тока определена в качестве заряда, который пересекает некоторую поверхность S в единицу времени. В системе СИ роль основной единицы измерения силы тока играет Ампер (А).

1A=1 Кл1 с.

Плотность тока. Связь плотности тока с зарядом и силой тока, напряженностью

Выделим в проводнике, в котором протекает ток, малый объем dV случайной формы. С помощью следующего обозначения υ определим среднюю скорость движения носителей зарядов в проводнике. Пускай n0 представляет собой концентрацию носителей заряда. На поверхности проводника выберем пренебрежительно малую площадку dS, которая расположена ортогонально скорости υ (рис. 1).

Плотность тока. Связь плотности тока с зарядом и силой тока, напряженностью

Рисунок 1

Проиллюстрируем на поверхности площадки dS очень короткий прямой цилиндр, имеющий высоту υdt. Весь массив частиц, которые располагались внутри такого цилиндра за время dt пересекут плоскость dS и перенесут через нее, в направлении скорости υ, заряд, выражающийся в виде следующего выражения:

dq=n0qeυdSdt,

где qe=1,6·10-19 Кл является зарядом электрона, другими словами отдельной частицы или же носителя тока. Разделим приведенную формулу на dSdt и получим:

j=dqdSdt,

где j представляет собой модуль плотности электрического тока.

j=n0qeυ,

где j является модулем плотности электрического тока в проводнике, в котором заряд переносится электронами. В случае, если ток появляется как результат движения нескольких типов зарядов, то формула плотности тока может быть определена в виде следующего выражения:

j=niqiυii,

где i представляет собой носитель заряда. Плотность тока — это векторная величина. Снова обратим внимание на рисунок 1. Пускай n представляет собой единичный перпендикуляр к плоскости dS. В случае, если частицы, переносящие заряд, являются положительными, то переносимый ими заряд в направлении нормали больше нуля. В общем случае переносимый в единицу времени элементарный заряд может быть записана в следующем виде:

dqdt=jndS=jndS.

Формула приведенная выше справедлива также в том случае, когда плоскость площадки dS неортогональная по отношению к вектору плотности тока. По той причине, что составляющая вектора j, направленная под прямым углом к нормали, через сечение dS электричества не переносит. Исходя из всего вышесказанного, плотность тока в проводнике окончательно запишем, применяя формулу j=n0qeυ в таком виде:

j=-n0qeυ.

Таким образом, плотность тока эквивалентна количеству электричества, другими словами заряду, который протекает за одну секунду через единицу сечения проводника. В отношении однородного цилиндрического проводника справедливым будет записать, что:

j=ISt,

где S играет роль площади сечения проводника. Плотность постоянного тока равна по всей площади сечения проводника. Для двух разных сечений проводника (S1,S2) с постоянным током справедливо следующее равенство:

j1j2=S2S1.

Основываясь на законе Ома для плотности токов можно записать такое выражение:

j=λE,

где λ обозначает коэффициент удельной электропроводности. Определив плотность тока, мы имеем возможность выразить силу тока в следующем виде:

I=SjndS,

где интегрирование происходит по всей поверхности S любого сечения проводника. Единица плотности тока Aм2.

Линии тока

Определение 3

Линии, вдоль которых движутся заряженные частицы, носят название линий тока.

Направления движения положительных зарядов также определяются в качестве направлений линий тока. Изобразив линии тока, можно получить наглядное представление о движении электронов и ионов, которые формируют собой ток. Если внутри проводника выделить трубку с током, у которой боковая поверхность состоит из линий тока, то движущиеся заряженные частицы не будут пересекать боковую поверхность данной трубки. Такую трубка представляет собой так называемую трубку тока. К примеру, поверхность металлической проволоки в изоляторе будет определяться как труба тока.

Пример 1

Сила тока в проводнике равномерно возрастает от 0 до 5 А на протяжении 20 с. Определите заряд, который прошел через поперечное сечение проводника за данный отрезок времени.

Решение

В качестве основы решения данной задачи возьмем формулу, которая характеризует собой силу тока, то есть:

I=dqdt.

Таким образом, заряд будет найден как:

q=t1t2Idt.

В условии задачи сказано, что сила тока изменяется равномерно, а это означает то, что мы можем записать закон изменения силы тока в следующем виде:

I=kt.

Найдем коэффициент пропорциональности в приведенном выражении, для чего необходимо запишем закон изменения силы тока еще раз для момента времени, при котором сила тока эквивалентна I2=3А (t2):

I2=kt2k=I2t2.

Подставим выражение выше в I=kt и проинтегрируем в соответствии с q=t1t2Idt, получим формулу такого вида: q=t1t2ktdt=t1t2I2t2tdt=I2t2t1t2tdt=t22t1t2=I22t2t22-t12.

В качестве начального момента времени возьмем момент, когда сила тока эквивалентна нулю, другими словами t1=0, I1=0 A; t2=20, I2=5 А. Проведем следующие вычисления:

q=I22t2t22=I2t22=5·202=50 (Кл).

Ответ: q=50 Кл.

Пример 2

Определите среднюю скорость движения электронов в проводнике, молярная масса вещества которого эквивалентна μ, поперечное сечение проводника S. Сила тока в проводнике I. Примем, что на каждый атом вещества в проводнике приходится два свободных электрона.

Решение

Силу тока (I) в проводнике можно считать постоянной, что позволяет нам записать следующее выражение:

I=qt=Nqet,

где заряд q определим как произведение числа электронов проводимости в проводнике, на заряд одного электрона qe, представляющего собой известную величину. t играет роль промежутка времени, за который через поперечное сечение проводника проходит заряд q. Найти N можно, если применять известное в молекулярной физике соотношение:

N'NА=mμ=ρVμ,

где N играет роль количества атомов в проводнике, объем которого V, плотность ρ, а молярная масса μ. NA представляет собой число Авогадро. По условию задачи N=2N. Найдем из N'NА=mμ=ρVμ число свободных электронов: N=2ρVμNA.

Подставим выражение, приведенное выше, в I=qt=Nqet, в результате чего получим:

I=2ρVμNAqet=2ρqeNASlμt,

где объем проводника найден как V=Sl, где l - длина проводника. Выразим ее.

l=μtI2ρqeNAS.

Среднюю скорость движения электронов или, другими словами, скорость тока в проводнике можно определить следующим образом: υ=lt=μI2ρqeNAS.

Ответ: υ=μI2ρqeNAS.

Навигация по статьям

Выполненные работы по физике
  • Физика

    Дистанционный экзамен

    • Вид работы:

      Дистанционный экзамен

    • Выполнена:

      12 сентября 2024 г.

    • Стоимость:

      1 800 руб

    Заказать такую же работу
  • Физика

    выполнить задания

    • Вид работы:

      Контрольная работа

    • Выполнена:

      29 июня 2024 г.

    • Стоимость:

      900 руб

    Заказать такую же работу
  • Физика

    Вариант и вариант

    • Вид работы:

      Контрольная работа

    • Выполнена:

      24 июня 2024 г.

    • Стоимость:

      16 400 руб

    Заказать такую же работу
  • Физика

    Определение коэффициента внутреннего трения жидкости методом Пуазейля

    • Вид работы:

      Лабораторная работа

    • Выполнена:

      20 июня 2024 г.

    • Стоимость:

      4 000 руб

    Заказать такую же работу
  • Физика

    модели атома опыт Резерфорда

    • Вид работы:

      Проектная работа

    • Выполнена:

      18 июня 2024 г.

    • Стоимость:

      1 800 руб

    Заказать такую же работу
  • Физика

    Дистанционный экзамен

    • Вид работы:

      Дистанционный экзамен

    • Выполнена:

      17 июня 2024 г.

    • Стоимость:

      11 200 руб

    Заказать такую же работу