Автор статьи

Статью подготовили специалисты образовательного сервиса Zaochnik.

Закон Ома для цепи переменного тока. Мощность

Содержание:

RIR=UR; 1ωCIC=UC; ωLIL=UL.

Указанные выше формулы внешне могут напоминать закон Ома  на участке цепи постоянного тока, но стоит заметить, что в этом случае вместо величин постоянных токов и напряжений на участке цепи, в них входят амплитудные значения напряжений и переменных токов.

Формулы, указанные выше, выражают собой закон Ома для переменного тока, который содержит один из элементов RL и C.

Определение 1

Rактивное сопротивление резистора.

1ωС  – емкостное сопротивление конденсатора.

ωL – индуктивное сопротивление катушки в цепи переменного тока.

Движение переменного тока по участку цепи провоцирует электромагнитное поле выполнять работу, благодаря чему выделяется джоулево тепло.

Определение 2

Мгновенной мощностью в цепи называется произведение мгновенных значений тока и напряжения: p=J·u.

Прикладной интерес у нас вызывает среднее значение мощности за некоторый период переменного тока:

P=Pcα=I0U0cos ωt cos ωt+φ.

В приведенной выше формуле I0 и U0 являются амплитудными значениями тока и напряжения на выбранном участке цепи, а φ – фазовым сдвигом между током и напряжением. Черта же представляет собой символ усреднения. В случае, когда цепь содержит только резистор с сопротивлением R, то фазовый сдвиг φ будет равен нулю: 

PR=IRURcos2ωt=IRUR2=IR2R2.

Действующие значения силы тока и напряжения

Определение 3

По причине необходимости совпадения с уравнением для мощности постоянного тока, нам приходится ввести определения действующих значений силы тока и напряжения: 

IД=l02; UД=U02.

Мощность переменного тока на участке цепи

Определение 4

Средняя величина мощности переменного тока на участке цепи, включающем в себя резистор, равняется: 

PR=IДUД.

Если в цепи содержится лишь конденсатор емкости C, то φ=π2. Отсюда, справедливо следующее выражение:

PC=ICUCcos ωt cosωt+π2=ICUCcos ωt-sin ωt=0.

Таким же способом можно проиллюстрировать, что PL=0.

Исходя из описанного выше получим следующие определение.

Определение 5

Мощность в цепи переменного тока выделяется только на активном сопротивлении, а среднее значение мощности переменного тока на конденсаторе и катушке индуктивности равняется нулю.

Теперь стоит рассмотреть электрическую цепь, включающую последовательно соединенные резистор, конденсатор и катушки, и подключенную к источнику переменного тока некой частоты ω. Следует выделить, что на всех участках цепи, соединенных последовательно, проходит один и тот же ток. Между напряжением внешнего источника e(t) и током J(t) проявляется фазовый сдвиг на определенный угол φ.

Исходя из приведенных выше фактов, мы можем записать:

J(t)=I0cos ωt; e(t)=δ0cos ωt+φ.

Данные формулы мгновенных значений тока и напряжения подходят к построениям, выполненным на векторной диаграмме (рис. 2.3.2).

Мощность переменного тока на участке цепи

Рисунок 2.3.2. Гармонические колебания A cos (ωt+φ1), B cos (ωt+φ2) и их суммы C cos (ωt+φ) на векторной диаграмме.

Средняя величина мощности, развиваемой источником переменного тока, может быть найдена из следующего выражения:

P=I0δ0cos ωt cos ωt+φ=I0δ02cos φ=IДδД cos φ.

Исходя из данных векторной диаграммы можно заявить, что UR=δ0·cos φ, следовательно,
P=I0UR2, а вся мощность, которую развивает источник питания, теряется в виде джоулева тепла на резисторе.

В прошлых темах нами было получено выражение, являющееся соотношением амплитуд тока I0 и напряжений δ0 в условиях последовательной RLC-цепи: 

I0=δ0R2+ωL-1ωC2

Определение 6

Z=R2+ωL-1ωC2– это величина, имеющая название полное сопротивление цепи переменного тока.

Определение 7

Связь между амплитудными значениями тока и напряжения в цепи имеет вид:

ZI0=δ0.

Данное выражение представляет собой закон Ома для цепи переменного тока.

Закон Ома в условиях параллельной RLC-цепи

В различных расчетах, связанных с работой над цепями переменного тока, очень важное место занимает понятие полного сопротивления. Для его определения в цепи в большей части случаев практично использовать метод векторных диаграмм. В качестве примера, приведем параллельный подключенный к внешнему источнику переменного тока (рис. 2.4.1) RLC-контур:

Закон Ома в условиях параллельной RLC-цепи

Рисунок 2.4.1. Параллельный RLC-контур.

При построении диаграммы важно учесть, что в условиях параллельного соединения напряжение на всех элементах RC и L идентично и равняется напряжению внешнего источника питания. Ток, текущий в разных ветвях цепи, различается не только по значениям амплитуд, но и по фазовым сдвигам относительно приложенного напряжения. Следовательно, полное сопротивление цепи невозможно вычислить опираясь на законы параллельного соединения цепей постоянного тока. Векторную диаграмму для параллельного RLC-контура можно увидеть на рис. 2.4.2.

Закон Ома в условиях параллельной RLC-цепи

Рисунок 2.4.2. Векторная диаграмма для параллельного RLC-контур.

Исходя из вида диаграммы, следует:

I0=δ01R2+ωL-1ωC2.

Определение 8

Соответственно, полное сопротивление параллельного RLC-контура выражается в виде следующего соотношения:

Z=11R2+ωL-1ωC2.

Определение 9

При параллельном резонансе (ω2=1LC) полное сопротивление цепи принимает свое максимальное значение, которое эквивалентно активному сопротивлению резистора:

Z=Zmax=R.

А значение фазового сдвига φ между током и напряжением при параллельном резонансе равняется нулю.

Навигация по статьям

Выполненные работы по физике
  • Физика

    Дистанционный экзамен

    • Вид работы:

      Дистанционный экзамен

    • Выполнена:

      12 сентября 2024 г.

    • Стоимость:

      1 800 руб

    Заказать такую же работу
  • Физика

    выполнить задания

    • Вид работы:

      Контрольная работа

    • Выполнена:

      29 июня 2024 г.

    • Стоимость:

      900 руб

    Заказать такую же работу
  • Физика

    Вариант и вариант

    • Вид работы:

      Контрольная работа

    • Выполнена:

      24 июня 2024 г.

    • Стоимость:

      16 400 руб

    Заказать такую же работу
  • Физика

    Определение коэффициента внутреннего трения жидкости методом Пуазейля

    • Вид работы:

      Лабораторная работа

    • Выполнена:

      20 июня 2024 г.

    • Стоимость:

      4 000 руб

    Заказать такую же работу
  • Физика

    модели атома опыт Резерфорда

    • Вид работы:

      Проектная работа

    • Выполнена:

      18 июня 2024 г.

    • Стоимость:

      1 800 руб

    Заказать такую же работу
  • Физика

    Дистанционный экзамен

    • Вид работы:

      Дистанционный экзамен

    • Выполнена:

      17 июня 2024 г.

    • Стоимость:

      11 200 руб

    Заказать такую же работу