Автор статьи

Статью подготовили специалисты образовательного сервиса Zaochnik.

Температура как мера средней кинетической энергии молекул

Содержание:

Представляем формулу основного уравнения молекулярно-кинетической теории (МКТ) газов:

(где n=NV – это концентрация частиц в газе, N – это число частиц, V – это объем газа, E – это средняя кинетическая энергия поступательного движения молекул газа, υkv – это средняя квадратичная скорость, m0 – это масса молекулы) связывает давление – макропараметр, достаточно просто измеряющийся с такими микропараметрами, как средняя энергия движения отдельной молекулы (или в другом выражении), как масса частицы и ее скорость. Но находя только лишь давление, нельзя установить кинетические энергии частиц отдельно от концентрации. Поэтому для нахождения в полном объеме микропараметров нужно знать еще какую-то физическую величину, связанную с кинетической энергией частиц, составляющих газ. За данную величину можно взять термодинамическую температуру.

Газовая температура

Для определения газовой температуры нужно вспомнить важное свойство, которое сообщает о том, что в условиях равновесия средняя кинетическая энергия молекул в смеси газов одинаковая для различных компонентов данной смеси. Из данного свойства следует то, что если 2 газа в различных сосудах находятся в тепловом равновесии, тогда средние кинетические энергии молекул данных газов одинаковые. Это свойство мы и будем использовать. К тому же в ходе экспериментов доказано, что для любых газов (при неограниченном числе), которые находятся в состоянии теплового равновесия, справедливо следующее выражение:

С учетом вышесказанного, используем (1) и (2) и получаем:

Из уравнения (3) следует, что величина θ, которой мы обозначили температуру, вычисляется в Дж, в чем измеряется также и кинетическая энергия. В лабораторных работах температура в системе измерения вычисляется в кельвинах. Поэтому введем коэффициент, который уберет данное противоречие. Он обозначается k, измеряется в ДжК и равняется 1,38·10-23. Данный коэффициент называется постоянной Больцмана. Таким образом:

Определение 1

θ=kT (4), где T – это термодинамическая температура в кельвинах.

Связь термодинамической температуры и средней кинетической энергией теплового движения молекул газа выражается формулой:

E=32kT (5).

Из уравнения (5) видно, что средняя кинетическая энергия теплового движения молекул прямо пропорциональна температуре газа. Температура является абсолютной величиной. Физический смысл температуры заключается в том, что она, с одной стороны, определяется средней кинетической энергией, которая приходится на 1 молекулу. А с другой стороны, температура – это характеристика системы в целом. Таким образом, уравнение (5) показывает связь параметров макромира с параметрами микромира.

Определение 2

Известно, что температура – это мера средней кинетической энергии молекул.

Можно установить температуру системы, а затем рассчитать энергию молекул.

Абсолютный ноль температур

В условиях термодинамического равновесия все составляющие системы характеризуются одинаковой температурой.

Определение 3

Температура, при которой средняя кинетическая энергия молекул равняется 0, давление идеального газа равняется 0, называется абсолютным нулем температур. Абсолютная температура никогда не является отрицательной.

Пример 1

Необходимо найти среднюю кинетическую энергию поступательного движения молекулы кислорода, если температура T=290 K. А также найти среднюю квадратичную скорость капельки воды диаметра d=10-7 м, взвешенной в воздухе.

Решение

Найдем среднюю кинетическую энергию движения молекулы кислорода по уравнению, связывающему энергию и температуру:

E=32kT (1.1).

Поскольку все величины заданы в системе измерения, проведем вычисления:

E=32·1,38·10-23·10-7=6·10-21 Дж.

Перейдем ко второй части задания. Положим, что капелька, взвешенная в воздухе, – это шар (рисунок 1). Значит, массу капельки можно рассчитать как:
m=ρ·V=ρ·πd36.

Абсолютный ноль температур

Рисунок 1

Найдем массу капельки воды. Согласно справочных материалов, плотность воды в нормальных условиях равняется ρ=1000 кгм3, тогда:

m=1000·3,14610-73=5,2·10-19 (кг).

Масса капельки чрезмерно маленькая, поэтому, сама капелька сравнима с молекулой газа, и тогда можно использовать при расчетах формулу средней квадратичной скорости капли:

E=mυkυ22 (1.2),

где E мы уже установили, а из (1.1) понятно, что энергия не зависит от разновидности газа, а зависит только лишь от температуры. Значит, мы можем применить полученную величину энергии. Найдем из (1.2) скорость:

υkυ=2Em=6·2Eπρd3=32kTπρd3 (1.3).

Рассчитаем:

υkυ=2·6·10-215,2·10-19=0,15 мс

Ответ: Средняя кинетическая энергия поступательного движения молекулы кислорода при заданной температуре равняется 6·10-21 Дж. Средняя квадратичная скорость капельки воды при заданных условиях равняется 0,15 м/с.

Пример 2

Средняя энергия поступательного движения молекул идеального газа равняется E, а давление газа p. Необходимо найти концентрацию частиц газа.

Решение

В основу решения задачи положим уравнение состояния идеального газа:

p=nkT (2.1).

Прибавим к уравнению (2.1) уравнение связи средней энергии поступательного движения молекул и температуры системы:

E=32kT (2.2).

Из (2.1) выражаем необходимую концентрацию:

n=pkT 2.3.

Из (2.2) выражаем kT:

kT=23E (2.4).

Подставляем (2.4) в (2.3) и получаем:

n=3p2E

Ответ: Концентрацию частиц можно найти по формуле n=3p2E.

Навигация по статьям

Выполненные работы по физике
  • Физика

    Дистанционный экзамен

    • Вид работы:

      Дистанционный экзамен

    • Выполнена:

      12 сентября 2024 г.

    • Стоимость:

      1 800 руб

    Заказать такую же работу
  • Физика

    выполнить задания

    • Вид работы:

      Контрольная работа

    • Выполнена:

      29 июня 2024 г.

    • Стоимость:

      900 руб

    Заказать такую же работу
  • Физика

    Вариант и вариант

    • Вид работы:

      Контрольная работа

    • Выполнена:

      24 июня 2024 г.

    • Стоимость:

      16 400 руб

    Заказать такую же работу
  • Физика

    Определение коэффициента внутреннего трения жидкости методом Пуазейля

    • Вид работы:

      Лабораторная работа

    • Выполнена:

      20 июня 2024 г.

    • Стоимость:

      4 000 руб

    Заказать такую же работу
  • Физика

    модели атома опыт Резерфорда

    • Вид работы:

      Проектная работа

    • Выполнена:

      18 июня 2024 г.

    • Стоимость:

      1 800 руб

    Заказать такую же работу
  • Физика

    Дистанционный экзамен

    • Вид работы:

      Дистанционный экзамен

    • Выполнена:

      17 июня 2024 г.

    • Стоимость:

      11 200 руб

    Заказать такую же работу