Автор статьи

Статью подготовили специалисты образовательного сервиса Zaochnik.

Основное свойство дроби: формулировка, доказательство, примеры применения

В данной статье разберем, в чем заключается основное свойство дроби, сформулируем его, приведем доказательство и наглядный пример. Затем рассмотрим, как применять основное свойство дроби при совершении действий сокращения дробей и приведения дробей к новому знаменателю.

Основное свойство дроби, формулировка, доказательство и примеры

Все обыкновенные дроби обладают важнейшим свойством, которое мы и называем основным свойством дроби, и звучит оно следующим образом:

Определение 1

Если числитель и знаменатель одной дроби умножить или разделить на одно и то же натуральное число, то в итоге получится дробь, равная заданной.

Представим основное свойство дроби в виде равенства. Для натуральных чисел a, b и m будут справедливыми равенства:

a·mb·m=ab и  a:mb:m=ab

Рассмотрим доказательство основного свойства дроби. Опираясь на свойства умножения натуральных чисел и свойства деления натуральных чисел, запишем равенства: (a · m) · b = (b · m) · a  и (a : m) · b = (b : m) · a. Таким образом, дроби a·mb·m и ab, а также a:mb:m и ab являются равными по определению равенства дробей.

Разберем пример, который графически проиллюстрирует основное свойство дроби.

Пример 1

Допустим, у нас есть квадрат, разделенный на 9 «больших» частей-квадратов. Каждый «большой» квадрат разделен на 4 меньших по размеру. Возможно сказать, что заданный квадрат поделен на 4·9 = 36 «маленьких» квадратов. Выделим цветом 5 «больших» квадратов. При этом окрашенными будут 4·5 = 20 «маленьких» квадратов. Покажем рисунок, демонстрирующий наши действия:

Основное свойство дроби, формулировка, доказательство и примеры

Окрашенная часть – это 59 исходной фигуры или 2036, что является тем же самым. Таким образом,  дроби 59 и 2036 являются равными: 59=2036 или 2036=59.

Эти равенства, а также равенства 20 = 4·5, 36 = 4·9, 20:4 = 5 и 36:4 = 9 дают возможность сделать вывод, что 59=5·49·4 и 2036=20·436·4.

Чтобы закрепить теорию, разберем решение примера.

Пример 2

Задано, что числитель и знаменатель некоторой обыкновенной дроби умножили на 47, после чего эти числитель и знаменатель разделили на 3. Равна ли полученная в итоге этих действий дробь заданной?

Решение

Опираясь на основное свойство дроби, можно говорить о том, что умножение числителя и знаменателя заданной дроби на натуральное число 47 даст в результате дробь, равную исходной. То же самое мы можем утверждать, производя дальнейшее деление на 3. В конечном счете мы получим дробь, равную заданной.

Ответ: да, полученная в итоге дробь будет равна исходной.

Применение основного свойства дроби

Основное свойство применяется, когда нужно привести дроби к новому знаменателю и при сокращении дробей.

Приведение дроби к новому знаменателю – это действие замены заданной дроби равной ей дробью, но с большими числителем и знаменателем. Чтобы привести дробь к новому знаменателю, нужно умножить числитель и знаменатель дроби на необходимое натуральное число. Действия с обыкновенными дробями были бы невозможны без способа приводить дроби к новому знаменателю.

Определение 2

Сокращение дроби – действие перехода к новой дроби, равной заданной, но с меньшими числителем и знаменателем. Чтобы сократить дробь, нужно разделить числитель и знаменатель дроби на одно и то же необходимое натуральное число, которое будет называться общим делителем.

Возможны случаи, когда подобного общего делителя нет, тогда говорят о том, что исходная дробь несократима или не подлежит сокращению. В частности, сокращение дроби при помощи наибольшего общего делителя приведет дробь к несократимому виду.

Навигация по статьям

Выполненные работы по математике
  • Математика

    Линейная алгебра и геометрия Теория вероятностей

    • Вид работы:

      Контрольная работа

    • Выполнена:

      17 мая 2012

    • Стоимость:

      600 руб

    Заказать такую же работу
  • Математика

    теория вероятности

    • Вид работы:

      Контрольная работа

    • Выполнена:

      16 апреля 2012

    • Стоимость:

      500 руб

    Заказать такую же работу
  • Математика

    теория вероятности

    • Вид работы:

      Контрольная работа

    • Выполнена:

      16 апреля 2012

    • Стоимость:

      500 руб

    Заказать такую же работу
  • Математика

    исследование функции и построение графика

    • Вид работы:

      Контрольная работа

    • Выполнена:

      27 марта 2012

    • Стоимость:

      200 руб

    Заказать такую же работу
  • Математика

    две контрольных работы

    • Вид работы:

      Контрольная работа

    • Выполнена:

      25 января 2012

    • Стоимость:

      1 100 руб

    Заказать такую же работу
  • Математика

    контрольная работа

    • Вид работы:

      Контрольная работа

    • Выполнена:

      24 января 2012

    • Стоимость:

      700 руб

    Заказать такую же работу