Материалы, подготовленные в результате оказания услуги, помогают разобраться в теме и собрать нужную информацию, но не заменяют готовое решение.

Перевод десятичной дроби в обыкновенную и наоборот: правило, примеры

Статью подготовили специалисты образовательного сервиса Zaochnik.

Содержание:

Бывает, что для удобства расчетов нужно перевести обыкновенную дробь в десятичную и наоборот. О том, как это делать, мы поговорим в данной статье. Разберем правила перевода обыкновенных дробей в десятичные и обратно, а также приведем примеры.

Перевод обыкновенных дробей в десятичные

Мы будем рассматривать перевод обыкновенных дробей в десятичные, придерживаясь определенной последовательности. Во первых, рассмотрим, как в десятичные переводятся обыкновенные дроби со знаменателем, кратным 10: 10, 100, 1000 и т.д.Дроби с такими знаменателями, по сути, являются, более громоздкой записью десятичных дробей.

Далее мы рассмотрим, как переводить в десятичные дроби обыкновенные дроби с любым, не только кратным 10, знаменателем. Отметим, что при обращении обыкновенных дробей в десятичные получаются не только конечные десятичные, но и бесконечные периодические десятичные дроби.

Приступим!

Перевод обыкновенных дробей со знаменателями 10, 100, 1000 и т.д. в десятичные дроби

Первым делом, скажем, что некоторые дроби нуждаются в определенной подготовке перед обращением в десятичный вид. В чем она заключается? Перед цифрой, стоящей в числителе, необходимо дописать столько нулей, чтобы количество цифр числителя стало равно числу нулей в знаменателе. Например, для дроби 3100 число 0 необходимо один раз дописать слева от 3 в числителе. Дробь 610, согласно изложенному выше правилу, не нуждается в доработке.

Рассмотрим еще один пример, после  чего сформулируем правило, которым особенно удобно пользоваться на первых порах, пока опыта в обращении дробей не так много. Так, дробь 1610000 после дописывания нулей в числителе будет иметь вид 001510000. 

Как перевести обыкновенную дробь со знаменателем 10, 100, 1000 и т.д. в десятичную?

Правило перевода обыкновенных правильных дробей в десятичные
  1. Записываем  и ставим после него запятую.
  2. Записываем число из числителя, которое получилось после дописывания нулей.

Теперь перейдем к примерам.

Замечание 1. Перевод обыкновенных дробей в десятичные

Переведем обыкновенную дробь  в десятичную.

Сначала смотрим на дробь и видим, что никаких подготовительных действий проводить не нужно - количество цифр в числителе совпадает с количеством нулей в знаменателе.

Следуя правилу, записываем , ставим после него десятичную запятую и записываем число из числителя. Получаем десятичную дробь .

Разберем решение еще одного примера по этой теме.

Замечание 2. Перевод обыкновенных дробей в десятичные

Запишем дробь  в виде десятичной дроби.

Количество нулей в знаменателе равно , а в числителе только три цифры. Допишем перед числом в числителе еще 4 нуля:

Теперь записываем , ставим после него десятичную запятую и записываем число из числителя. Получаем десятичную дробь .

Рассмотренные во всех примерах дроби - обыкновенные правильные дроби. Но как перевести неправильную обыкновенную дробь в десятичную? Сразу скажем, что необходимость в подготовке с дописыванием нулей для таких дробей отпадает. Сформулируем правило.

Правило перевода обыкновенных неправильных дробей в десятичные
  1. Записываем число, которое находится в числителе.
  2. Десятичной запятой отделяем столько цифр справа, сколько нулей есть в знаменателе исходной обыкновенной дроби.

Ниже приведем пример на использование этого правила.

Замечание 3. Перевод обыкновенных дробей в десятичные

Переведем дробь  из обыкновенной неправильной в десятичную.

Сначала запишем число из числителя:

Теперь справа отделим десятичной запятой пять цифр (количество нулей в знаменателе - пять). Получим:

Следующий вопрос, который закономерно возникает: как перевести в десятичную дробь смешанное число, если знаменателем его дробной части является число 10, 100, 1000 и т.д. Для обращения в десятичную дробь такого числа можно воспользоваться следующим правилом. 

Правило перевода смешанных чисел в десятичные дроби
  1. Выполняем подготовку дробной части числа, если это необходимо.
  2. Записываем целую часть исходного числа и ставим после него запятую.
  3. Записываем число из числителя дробной части вместе с дописанными нулями.

Обратимся к примеру.

Замечание 4. Перевод смешанных чисел в десятичные дроби

Переведем смешанное число  в десятичную дробь.

В дробной части имеем выражение . Выполним его подготовку и допишем слева от числителя еще два нуля. Получим: .

Теперь записываем целую часть числа и ставим после него запятую: 

После запятой записываем число из числителя вместе с нулями. Получаем результат:

Перевод обыкновенных дробей в конечные и бесконечные периодические дроби

Конечно, можно переводить в десятичные дроби и обыкновенные дроби со знаменателем, не равным 10, 100, 1000 и т.д.

Часто дробь можно легко привести к новому знаменателю, а затем уже воспользоваться правилом, изложенным в первом пункте данной статьи. Например, достаточно умножить числитель и знаменатель дроби 25 на 2, и мы получим дробь 410, которая легко приводится к десятичному виду 0,4.

Однако такой способ перевода обыкновенной дроби в десятичную удается использовать не всегда. Ниже рассмотрим, как поступать, если применить рассмотренный способ невозможно.

Принципиально новый способ обращения обыкновенной дроби в десятичную сводится к делению числителя на знаменатель столбиком. Эта операция очень похожа на деление натуральных чисел столбиком, но имеет свои особенности.

Числитель при делении представляется в виде десятичной дроби - справа от последней цифры числителя ставится запятая и дописываются нули. В получившемся частном десятичная запятая ставится тогда, когда заканчивается деление целой части числителя. Как именно работает этот способ, станет понятно после рассмотрения примеров.

Замечание 5. Перевод обыкновенных дробей в десятичные

Переведем обыкновенную дробь  в десятичный вид.

Представим число  из числителя в виде десятичной дроби, добавив после запятой несколько нулей. 

Теперь разделим столбиком  на . Первые три шага деления будут такими же, как при делении натуральных чисел, и мы получим.

Перевод обыкновенных дробей в десятичные

Когда мы добрались до десятичной запятой в делимом, а остаток отличен от нуля, ставим в частном десятичную запятую, и продолжаем делить, не обращая более внимания на запятую в делимом.

Перевод обыкновенных дробей в десятичные

В итоге мы получаем десятичную дробь , которая и является результатом обращения обыкновенной дроби 

Рассмотрим решение еще одного примера, чтобы закрепить материал.

Замечание 6. Перевод обыкновенных дробей в десятичные

Обратим обыкновенную дробь .

Для этого в столбик разделим дробь  на . Деление целой части закончится на первом же шаге, поэтому сразу после него ставим в частном десятичную запятую и продолжаем деление, не обращая внимания на запятую в делимом до того момента, пока не получим остаток, равный нулю.

Перевод обыкновенных дробей в десятичные

В результате мы получили: .

Но как быть, если при делении мы так и не получим в остатке 0. В таких случаях деление можно продолжать бесконечно долго. Однако, начиная с определенного шага, остатки будут периодически повторяться. Соответственно, будут повторяться и цифры в частном. Это значит, что обыкновенная дробь переводится в десятичную бесконечную периодическую дробь. Проиллюстрируем сказанное на примере.

Замечание 7. Перевод обыкновенных дробей в десятичные

Обратим обыкновенную дробь  в десятичную. Для этого выполним деление столбиком.

Перевод обыкновенных дробей в десятичные

Мы видим, что при делении повторяются остатки  и . При этом в частном повторяются цифры  и .  Это и есть период в десятичной дроби. При записи эти цифры берутся в скобки. 

Таким образом, исходная обыкновенная дробь переведена в бесконечную периодическую десятичную дробь.

.

Пусть перед нами несократимая обыкновенная дробь. К какому виду она приведется? Какие обыкновенные дроби переводятся в конечные десятичные, а какие - в бесконечные периодические? 

Во первых, скажем, что если дробь удается привести к одному из знаменателей 10, 100, 1000.., то она будет иметь вид конечной десятичной дроби. Чтобы дробь приводилась к одному из таких знаменателей, ее знаменатель должен быть делителем хотя бы одного из чисел 10, 100, 1000 и т.д. Из правил разложения чисел на простые множители следует, что делитель чисел 10, 100, 1000 и т.д. должен, при разложении на простые множители, содержать лишь числа 2 и 5. 

Подытожим сказанное:

  1. Обыкновенную дробь можно привести к виду конечной десятичной дроби, если ее знаменатель можно разложить на простые множители 2 и 5.
  2. Если кроме чисел 2 и 5 в разложении знаменателя присутствуют другие простые числа, дробь приводится к  виду бесконечной периодической десятичной дроби.

Приведем пример.

Пример 1. Перевод обыкновенных дробей в десятичные

Какая из данных дробей  переводится в конечную десятичную дробь, а какая - только в периодическую. 

Решение

Дадим ответ на этот вопрос, не выполняя непосредственно перевода обыкновенной дроби в десятичную.

Дробь , как легко заметить, умножением числителя и знаменателя на  приводится к новому знаменателю .

.  Отсюда делаем вывод, что данная дробь переводится в конечную десятичную дробь.

Разложение знаменателя дроби  на множители дает . Так как простой множитель  отличен от  и от , данная дробь не может быть представлена в виде конечной десятичной дроби, а будет иметь вид бесконечной периодической дроби.

Дробь , во-первых, нужно сократить. После сокращения на  получим несократимую дробь , разложение знаменателя которой на множители дает . Следовательно, это конечная десятичная дробь.

В случае с дробью  разложение знаменателя на множители представляет собой само простое число . Соответственно, эту дробь можно обратить в бесконечную периодическую десятичную дробь.

Ответ: переводится в конечную десятичную дробь, бесконечной периодической дроби, конечная десятичная дробь, периодическую десятичную дробь

Обыкновенную дробь нельзя перевести в бесконечную и непериодическую десятичную дробь

Выше мы говорили только о конечных и бесконечных периодических дробях. Но может ли какая-либо обыкновенная дробь быть обращена в вид бесконечной непериодической дроби?

Отвечаем: нет!

Важно!

При переводе бесконечной дроби в десятичную получается либо конечная десятичная дробь, либо бесконечная периодическая десятичная дробь.

Остаток от деления всегда меньше делителя. Другими словами, согласно теореме о делимости, если мы делим какое-то натуральное число на число q, то остаток деления в любом случае не может быть больше, чем q-1. После окончания деления возможна одна из следующих ситуаций:

  1. Мы получаем в остатке 0, и на этом деление заканчивается.
  2. Мы получаем остаток, который при последующем делении повторяется, в результате мы имеем бесконечную периодическую дробь. 

Иных вариантов при обращении обыкновенной дроби в десятичную не может быть. Скажем также, что длина периода (количество цифр) в бесконечной периодической дроби всегда меньше, чем число цифр в знаменателе соответствующей обыкновенной дроби.

Перевод десятичных дробей в обыкновенные дроби

Теперь пришло время рассмотреть обратный процесс перевода десятичной дроби в обыкновенную. Сформулируем правило перевода, которое включает три этапа. Как перевести десятичную дробь в обыкновенную?

Правило перевода десятичных дробей в обыкновенные дроби
  1. В числитель записываем число из исходной десятичной дроби, отбросив запятую и все нули слева, если они есть.
  2. В знаменатель записываем единицу и за ней столько нулей, сколько цифр есть в исходной десятичной дроби после запятой.
  3. При необходимости сокращаем полученную обыкновенную дробь. 

Рассмотрим применение данного правила на примерах.

Пример 2. Перевод десятичных дробей в обыкновенные

Представим число  в виде обыкновенной дроби.

Решение

  1. В числитель записываем саму десятичную дробь, отбросив запятую: .
  2. В знаменателе пишем единицу, а после нее три нуля - именно столько цифр содержится в исходной дроби после запятой: .
  3. Полученную дробь  можно сократить на , в результате чего мы получим: .

Ответ:  

Замечание 8. Перевод десятичных дробей в обыкновенные

Переведем дробь  из десятичных в обыкновенные.

  1. В числителе запишем дробь , отбросив запятую и нули слева. Получится .
  2. В знаменатель записываем единицу, а после нее пишем четыре нуля: . Данная дробь несократима.

Если в десятичной дроби есть целая часть, то такую дробь можно сразу перевести в смешанное число. Как это сделать?

Сформулируем еще одно правило.

Правило перевода десятичных дробей в смешанные числа.
  1. Число, стоящее в дроби до запятой, записываем как целая часть смешанного числа.
  2. В числителе  записываем число, стоящее в дроби после запятой, отбросив нули слева, если они есть.
  3. В знаменателе дробной части дописываем единицу и столько нулей, сколько цифр есть в дробной части после запятой.

Обратимся к примеру

Пример 3. Перевод десятичной дроби в смешанное число

Представим дробь  в виде смешанного числа.

Решение

  1. Записываем число , как целую часть.
  2. В числителе записываем цифры после запятой, отбросив нуль.
  3. В знаменателе записываем единицу и пять нулей

Поучаем смешанное число: 

Дробную часть можно сократить на  Сокращаем, и получаем финальный результат:

Ответ:  

Перевод бесконечных периодических десятичных дробей в обыкновенные дроби

Разберем на примерах, как осуществлять перевод периодических десятичных дробей в обыкновенные. Прежде чем начать, уточним: любую периодическую десятичную дробь можно перевести в обыкновенную.

Самый простой случай - период дроби равен нулю. Периодическая дробь с нулевым периодом заменяется на конечную десятичную дробь, а процесс обращения такой дроби сводится к обращению конечной десятичной дроби.

Замечание 9. Перевод периодической десятичной дроби в обыкновенную

Обратим периодическую дробь .

Отбросив нули справа, получим конечную десятичную дробь .

Обращая данную дробь в обыкновенную по алгоритму, разобранному в предыдущих пунктах, получаем:

.

Как быть, если период дроби отличен от нуля? Периодическую часть следует рассматривать как сумму членов геометрический прогрессии, которая убывает. Поясним это на примере:

Для суммы членов бесконечной убывающей геометрической прогрессии существует формула. Если первый член прогрессии равен , а знаменатель  таков, что , то сумма равна .

Рассмотрим несколько примеров с применением данной формулы.

Пример 4. Перевод периодической десятичной дроби в обыкновенную

Пусть у нас есть периодическая дробь  и нам нужно перевести ее в обыкновенную.

Решение

Здесь мы имеем бесконечную убывающую геометрическую прогрессию с первым членом  и знаменателем .

Применим формулу:

Это и есть искомая обыкновенная дробь.

Ответ: 8/9

Для закрепления материала рассмотрим еще один пример.

Пример 13. Перевод периодической десятичной дроби в обыкновенную

Обратим дробь .

Решение

Сначала записываем дробь в виде бесконечной суммы:

Рассмотрим слагаемые в скобках. Эту геометрическую прогрессию можно представить в следующем виде:

.

Полученное прибавляем к конечной дроби  и получаем результат:

После сложения данных дробей и сокращения получим окончательный ответ:

Ответ:  

В завершение данной статьи скажем, что непериодические бесконечный десятичные дроби нельзя перевести в вид обыкновенных дробей.

Математические онлайн-калькуляторы

Навигация по статьям

Выполненные работы по математике

  • Математика

    Линейная алгебра и геометрия Теория вероятностей

    • Вид работы:

      Контрольная работа

    • Выполнена:

      17 мая 2012

    • Стоимость:

      600 руб.

    Заказать такую же работу
  • Математика

    теория вероятности

    • Вид работы:

      Контрольная работа

    • Выполнена:

      16 апреля 2012

    • Стоимость:

      500 руб.

    Заказать такую же работу
  • Математика

    теория вероятности

    • Вид работы:

      Контрольная работа

    • Выполнена:

      16 апреля 2012

    • Стоимость:

      500 руб.

    Заказать такую же работу
  • Математика

    исследование функции и построение графика

    • Вид работы:

      Контрольная работа

    • Выполнена:

      27 марта 2012

    • Стоимость:

      200 руб.

    Заказать такую же работу
  • Математика

    две контрольных работы

    • Вид работы:

      Контрольная работа

    • Выполнена:

      25 января 2012

    • Стоимость:

      1 100 руб.

    Заказать такую же работу
  • Математика

    контрольная работа

    • Вид работы:

      Контрольная работа

    • Выполнена:

      24 января 2012

    • Стоимость:

      700 руб.

    Заказать такую же работу