Автор статьи

Статью подготовили специалисты образовательного сервиса Zaochnik.

Сравнение отрицательных чисел: правило, примеры

Содержание:

В статье ниже озвучим принцип сравнения отрицательных чисел: сформулируем правило и применим его в решении практических задач.

Правило сравнения отрицательных чисел

В основе правила – сравнение модулей исходных данных. По сути, сравнить два отрицательных числа – значит сравнить положительные числа, равные модулям сравниваемых отрицательных чисел.

Определение 1

При сравнении двух отрицательных чисел меньшим является то число, модуль которого больше; бОльшим является то число, модуль которого меньше. Заданные отрицательные числа являются равными, если их модули равны.

Сформулированное правило применимо как к отрицательным целым числам, так и к рациональным и действительным.

Геометрическое толкование подтверждает принцип, озвученный в указанном правиле: на координатной прямой отрицательное число, которое является меньшим, находится левее, чем большее отрицательное. Это утверждение, в общем, верно для любых чисел.

Примеры сравнения отрицательных чисел

Самым простым примером сравнения отрицательных чисел является сравнение целых чисел. С подобной задачи и начнем.

Пример 1

Необходимо сравнить отрицательные числа -65 и -23.

Решение

Согласно правилу, для осуществления действия сравнения отрицательных чисел сначала необходимо определить их модули. |-65| = 65 и |-23| = 23. Теперь сравним положительные числа, равные модулям заданных: 65 > 23. Применим вновь правило, гласящее, что больше то отрицательное число, модуль которого меньше. Таким образом, получим: -65 < -23.

 Ответ:  -65 < -23.

Чуть сложнее сравнивать отрицательные рациональные числа: действие в конечном счете приводит к сравнению обыкновенных или десятичных дробей.

Пример 2

Необходимо определить, какое из заданных чисел больше: -4314 или -4,7.

Решение 

Определим модули сравниваемых чисел. -4314=4314 и |-4,7| = 4,7. Теперь сравним полученные модули. Целые части дробей равны, так что приступим к сравнению дробных частей: 314 и 0,7. Осуществим перевод десятичной дроби 0,7 в обыкновенную: 710, найдем общие знаменатели сравниваемых дробей, получим: 1570 и 4970. Тогда результатом сравнения станет: 1570<4970  или 314<0,7. Таким образом, 4314<4,7 .fff Применив правило сравнения отрицательных чисел, имеем: -4314<-4,7

Также можно было осуществить сравнение путем перевода обыкновенной дроби в десятичную. Разница – лишь в удобстве вычисления.

Ответ: -4314<-4,7

Сравнение отрицательных действительных чисел производится согласно тому же правилу.

Навигация по статьям

Выполненные работы по математике
  • Математика

    Формирование вычислительных навыков на уроках математики в начальной школе.

    • Вид работы:

      Курсовая

    • Выполнена:

      14 июля 2022 г.

    • Стоимость:

      2 580 руб

    Заказать такую же работу
  • Математика

    Роль геометрии в развитии научного мышления

    • Вид работы:

      Эссе

    • Выполнена:

      19 мая 2022 г.

    • Стоимость:

      300 руб

    Заказать такую же работу
  • Математика

    Геометрия в повседневной жизни

    • Вид работы:

      Эссе

    • Выполнена:

      18 мая 2022 г.

    • Стоимость:

      800 руб

    Заказать такую же работу
  • Математика

    Значение геометрии в современном мире

    • Вид работы:

      Эссе

    • Выполнена:

      17 мая 2022 г.

    • Стоимость:

      400 руб

    Заказать такую же работу
  • Математика

    Методы обучения математике

    • Вид работы:

      Эссе

    • Выполнена:

      16 мая 2022 г.

    • Стоимость:

      500 руб

    Заказать такую же работу
  • Математика

    Проблемы и перспективы современного школьного математического образования

    • Вид работы:

      Эссе

    • Выполнена:

      15 мая 2022 г.

    • Стоимость:

      650 руб

    Заказать такую же работу