Автор статьи

Статью подготовили специалисты образовательного сервиса Zaochnik.

Основные свойства действий с рациональными числами

Данная статья посвящена обзору свойств действий с рациональными числами. Сначала рассмотрены основные свойства, а затем - те свойства, которые базируются на основных свойствах. 

Действия с рациональными числами. Основные свойства

Все свойства действий с рациональными числами базируются на основе свойств действий с целыми числами. Пусть a, b, c, d - некоторые произвольные рациональные числа. Перечисли оcновные свойства действий с ними.

  1. Коммутативное свойство сложения. Оно еще называется коммутативным или переместительным законом. a+b=b+a.
  2. Сочетательное свойство, или сочетательный закон сложения. a+(b+c)=(a+b)+c.
  3. Ноль - нейтральный элемент по сложению. Сложение нуля с любым числом не изменяет это число. a+0=a.
  4. Для любого рационального числа a существует такое противоположное число -a, что a+(-a)=0.
  5. Коммутативный (переместительный) закон умножения рациональных чисел. a·b=b·a.
  6. Сочетательный закон умножения.a·b·c=a·(b·c).
  7. Единица - нейтральный элемент по умножению. Умножение любого числа на единицу не изменяет этого числа. a·1=a.
  8. Для любого рационального числа a, отличного от ноля, существует такое обратное число a-1, что a·a-1=1.
  9. Распределительное свойство умножения относительно сложения. a·(b+c)=a·b+a·c.

Перечисленные выше свойства - основные свойства действий с рациональными числами. Остальные свойства являются следствием основных свойств.

Другие свойства рациональных чисел

Кратко рассмотрим иные, наиболее часто используемые свойства действий с рациональными числами.

Умножение рациональных чисел с разными знаками. a·(-b)=-(a·b) или (-a)·b=-(a·b)

Умножение отрицательных рациональных чисел. (-a)·(-b)=a·b

Умножение произвольного числа на ноль. a·0=0. Остановимся на доказательстве этого свойства. Пусть d - любое рациональное число. Справедливым будет равенство 0=d+(-d), которое можно переписать так: a·0=a·(d+(-d)). Теперь перепишем равенство с учетом распределительного свойства:

a·0=a·d+a·(-d)a·d+a·(-d)=a·d+(-a·d)

Сумма двух противоположных чисел a·d и (-a·d) дает ноль. Что и требовалось доказать.

Рассмотренные выше свойства - свойства умножения и сложения. Свойства вычитания и деления задаются как обратные свойства соответственно к сложению и умножению. Так, разность двух чисел a-b можно записать в виде суммы a+(-b), а частное ab есть не что иное, как произведение a·b-1.

С учетом свойств умножения и сложения можно доказать любые свойства действий с рациональными числами. Для примера, возьмем распределительное свойство умножения относительно вычитания:

a·(b-c)=a·b-a·ca·(b-c)=a·(b+(-c))=a·b+a·(-c)=a·b+(-a·c)=a·b-a·c

Навигация по статьям

Выполненные работы по математике
  • Математика

    Линейная алгебра и геометрия Теория вероятностей

    • Вид работы:

      Контрольная работа

    • Выполнена:

      17 мая 2012

    • Стоимость:

      600 руб

    Заказать такую же работу
  • Математика

    теория вероятности

    • Вид работы:

      Контрольная работа

    • Выполнена:

      16 апреля 2012

    • Стоимость:

      500 руб

    Заказать такую же работу
  • Математика

    теория вероятности

    • Вид работы:

      Контрольная работа

    • Выполнена:

      16 апреля 2012

    • Стоимость:

      500 руб

    Заказать такую же работу
  • Математика

    исследование функции и построение графика

    • Вид работы:

      Контрольная работа

    • Выполнена:

      27 марта 2012

    • Стоимость:

      200 руб

    Заказать такую же работу
  • Математика

    две контрольных работы

    • Вид работы:

      Контрольная работа

    • Выполнена:

      25 января 2012

    • Стоимость:

      1 100 руб

    Заказать такую же работу
  • Математика

    контрольная работа

    • Вид работы:

      Контрольная работа

    • Выполнена:

      24 января 2012

    • Стоимость:

      700 руб

    Заказать такую же работу