Автор статьи

Статью подготовили специалисты образовательного сервиса Zaochnik.

Нахождение наименьшего общего кратного: способы, примеры нахождения НОК

Что такое нок в математике? Продолжим разговор о наименьшем общем кратном, который мы начали в разделе « НОК – наименьшее общее кратное, определение, примеры». В этой теме мы узнаем, как найти наименьшее общее кратное, какие есть для этого способы для трех чисел и более, разберем вопрос о том, как находить НОК отрицательного числа. Также разберемся, что такое нок и нод, как найти нок и нод. 

Вычисление наименьшего общего кратного (НОК) через НОД

Мы уже узнали, что такое нок, а также установили связь наименьшего общего кратного с наибольшим общим делителем (кратность показывает в расчетах во сколько раз один показатель больше другого). Теперь как настоящие математики научимся определять НОК через НОД (нок и нод чисел натуральных). Сначала разберемся, как найти нок для положительных чисел. Сделать это можно и онлайн или на калькуляторе, но лучше научиться самостоятельно.

Определение 1

Поиск наименьшего общего кратного через наибольший общий делитель можно по формуле НОК(a, b)=a·b:НОД(a, b).

Пример 1

Необходимо найти НОК чисел 126 и 70.

Решение

Начнем решать. Примем a=126, b=70. Подставим значения в формулу вычисления наименьшего общего кратного через наибольший общий делитель НОК(a, b)=a·b:НОД(a, b).

Найдем НОД чисел 70 и 126. Для этого нам понадобится алгоритм Евклида: 126=70·1+56, 70=56·1+14, 56=14·4, следовательно, NOD(126, 70)=14.

Вычислим НОК: НОК(126, 70)=126·70:НОД(126, 70)=126·70:14=630.

Ответ: NOC(126, 70)=630.

Пример 2

Найдите нок чисел 68 и 34.

Решение

Как находить нод? НОД в данном случае нейти несложно, так как 68 делится на 34. Вычислим самое маленькое общее кратное по формуле: НОК(68, 34)=68·34:НОД(68, 34)=68·34:34=68.

Ответ: НОК(68, 34)=68.

В этом примере мы использовали правило нахождения наименьшего общего кратного для целых положительных чисел a и b: если первое число делится на второе, что НОК этих чисел будет равно первому числу.

Нахождение НОК с помощью разложения чисел на простые множители

Теперь давайте рассмотрим способ нахождения НОК, который основан на разложении чисел на простые множители. Перед тем, как это узнавать, дадим небольшое определение. 

Определение 2

Для нахождения наименьшего общего кратного нам понадобится выполнить ряд несложных действий:

  • составляем произведение всех простых множителей чисел, для которых нам нужно найти НОК;
  • исключаем их полученных произведений все простые множители;
  • полученное после исключения общих простых множителей произведение будет равно НОК данных чисел.

Этот способ нахождения наименьшего общего кратного основан на равенстве НОК(a, b)=a·b:НОД(a, b). Если посмотреть на формулу, то станет понятно: произведение чисел a и b равно произведению всех множителей, которые участвуют в разложении этих двух чисел. При этом НОД двух чисел равен произведению всех простых множителей, которые одновременно присутствуют в разложениях на множители данных двух чисел.

Пример 3

У нас есть два числа 75 и 210. Мы можем разложить их на множители следующим образом: 75=3·5·5 и 210=2·3·5·7. Если составить произведение всех множителей двух исходных чисел, то получится: 2·3·3·5·5·5·7.

Если исключить общие для обоих чисел множители 3 и 5, мы получим произведение следующего вида: 2·3·5·5·7=1050. Это произведение и будет нашим НОК для чисел 75 и 210.

Пример 4

Найдите НОК чисел 441 и 700, разложив оба числа на простые множители.

Решение

Найдем все простые множители чисел, данных в условии:

44114749713377


700350175357122557

Получаем две цепочки чисел: 441=3·3·7·7 и 700=2·2·5·5·7.

Произведение всех множителей, которые участвовали в разложении данных чисел, будет иметь вид: 2·2·3·3·5·5·7·7·7. Найдем общие множители. Это число 7. Исключим его из общего произведения: 2·2·3·3·5·5·7·7. Получается, что НОК(441, 700)=2·2·3·3·5·5·7·7=44 100.

Ответ: НОК(441, 700)= 44 100.

Дадим еще одну формулировку метода нахождения НОК путем разложения чисел на простые множители.

Определение 3

Раньше мы исключали из всего количества множителей общие для обоих чисел. Теперь мы сделаем иначе:

  • разложим оба числа на простые множители:
  • добавим к произведению простых множителей первого числа недостающие множители второго числа;
  • получим произведение, которое и будет искомым НОК двух чисел.
Пример 5

Вернемся к числам 75 и 210, для которых мы уже пробовали искать НОК в одном из прошлых примеров. Разложим их на простые множители: 75=3·5·5 и 210=2·3·5·7. К произведению множителей 3, 5 и 5 числа 75 добавим недостающие множители 2 и 7 числа 210. Получаем: 2·3·5·5·7. Это и есть НОК чисел 75 и 210.

Пример 6

Необходимо вычислить НОК чисел 84 и 648.

Решение

Разложим числа из условия на простые множители: 84=2·2·3·7 и 648=2·2·2·3·3·3·3. Добавим к произведению множителей 2, 2, 3 и 7 числа 84 недостающие множители 2, 3, 3 и
3 числа 648. Получаем произведение 2·2·2·3·3·3·3·7=4536. Это и есть наименьшее общее кратное чисел 84 и 648​​​​​​ ​.

Ответ: НОК(84, 648)=4 536.

Нахождение НОК трех и большего количества чисел

Независимо от того, с каким количеством чисел мы имеем дело, алгоритм наших действий всегда будет одинаковым: мы будем последовательно находить НОК двух чисел. На этот случай есть теорема.

Теорема 1

Предположим, что у нас есть целые числа a1, a2, , ak. НОК mk этих чисел находится при последовательном вычислении m2=НОК(a1, a2), m3=НОК(m2, a3), , mk=НОК(mk1, ak).

Теперь рассмотрим, как можно применять теорему для решения конкретных задач.

Пример 7

Необходимо вычислить наименьшее общее кратное четырех чисел 140, 9, 54 и 250.

Решение задания

Введем обозначения: a1=140, a2=9, a3=54, a4=250.

Начнем с того, что вычислим m2=НОК(a1, a2)=НОК(140, 9). Применим алгоритм Евклида для вычисления НОД чисел 140 и 9: 140=9·15+5, 9=5·1+4, 5=4·1+1, 4=1·4. Получаем: НОД(140, 9)=1, НОК(140, 9)=140·9:НОД(140, 9)=140·9:1=1 260. Следовательно, m2=1 260.

Теперь вычислим по тому е алгоритму m3=НОК(m2, a3)=НОК(1 260, 54). В ходе вычислений получаем m3=3 780.

Нам осталось вычислить m4=НОК(m3, a4)=НОК(3 780, 250). Действуем по тому же алгоритму. Получаем m4=94 500.

НОК четырех чисел из условия примера равно 94500.

Ответ: НОК(140, 9, 54, 250)=94 500.

Как видите, вычисления получаются несложными, но достаточно трудоемкими. Чтобы сэкономить время, можно пойти другим путем.

Определение 4

Предлагаем вам следующий алгоритм действий: 

  • раскладываем все числа на простые множители;
  • к произведению множителей первого числа добавляем недостающие множители из произведения второго числа;
  • к полученному на предыдущем этапе произведению добавляем недостающие множители третьего числа и т.д.;
  • полученное произведение будет наименьшим общим кратным всех чисел из условия.
Пример 8

Необходимо найти НОК пяти чисел 84, 6, 48, 7, 143.

Решение

Разложим все пять чисел на простые множители: 84=2·2·3·7, 6=2·3, 48=2·2·2·2·3, 7, 143=11·13. Простые числа, которым является число 7, на простые множители не раскладываются. Такие числа совпадают со своим разложением на простые множители.

Теперь возьмем произведение простых множителей 2, 2, 3 и 7 числа 84 и добавим к ним недостающие множители второго числа. Мы разложили число 6 на 2 и 3. Эти множители уже есть в произведении первого числа. Следовательно, их опускаем.

Продолжаем добавлять недостающие множители. Переходим к числу 48, из произведения простых множителей которого берем 2 и 2. Затем добавляем простой множитель 7 от четвертого числа и множители 11 и 13 пятого. Получаем: 2·2·2·2·3·7·11·13=48 048. Это и есть наименьшее общее кратное пяти исходных чисел.

Ответ: НОК(84, 6, 48, 7, 143)=48 048.

Нахождение наименьшего общего кратного отрицательных чисел

Для того чтобы найти наименьшее общее кратное отрицательных чисел, эти числа необходимо сначала заменить на числа с противоположным знаком, а затем провести вычисления по приведенным выше алгоритмам.

Пример 9

НОК(5434)=НОК(54, 34), а НОК(622, 46, 54, 888)=НОК(622, 46, 54, 888).

Такие действия допустимы в связи с тем, что если принять, что a и a – противоположные числа,
то  множество кратных числа a совпадает со множеством кратных числа a.

Пример 10

Необходимо вычислить НОК отрицательных чисел 145 и 45.

Решение

Произведем замену чисел 145 и 45 на противоположные им числа 145 и 45. Теперь по алгоритму вычислим НОК(145, 45)=145·45:НОД(145, 45)=145·45:5=1 305, предварительно определив НОД по алгоритму Евклида.

Получим, что НОК чисел 145 и 45 равно 1 305.

Ответ: НОК(145, 45)=1 305.

Навигация по статьям

Выполненные работы по математике
  • Математика

    Линейная алгебра и геометрия Теория вероятностей

    • Вид работы:

      Контрольная работа

    • Выполнена:

      17 мая 2012

    • Стоимость:

      600 руб

    Заказать такую же работу
  • Математика

    теория вероятности

    • Вид работы:

      Контрольная работа

    • Выполнена:

      16 апреля 2012

    • Стоимость:

      500 руб

    Заказать такую же работу
  • Математика

    теория вероятности

    • Вид работы:

      Контрольная работа

    • Выполнена:

      16 апреля 2012

    • Стоимость:

      500 руб

    Заказать такую же работу
  • Математика

    исследование функции и построение графика

    • Вид работы:

      Контрольная работа

    • Выполнена:

      27 марта 2012

    • Стоимость:

      200 руб

    Заказать такую же работу
  • Математика

    две контрольных работы

    • Вид работы:

      Контрольная работа

    • Выполнена:

      25 января 2012

    • Стоимость:

      1 100 руб

    Заказать такую же работу
  • Математика

    контрольная работа

    • Вид работы:

      Контрольная работа

    • Выполнена:

      24 января 2012

    • Стоимость:

      700 руб

    Заказать такую же работу