Статью подготовили специалисты образовательного сервиса Zaochnik.
Решение квадратных неравенств методом интервалов
Содержание:
- 17 июля 2023
- 8 минут
- 1519
Универсальным методом решения неравенств по праву считается метод интервалов. Именно его проще всего использовать для решения квадратных неравенств с одной переменной. В этом материале мы рассмотрим все аспекты применения метода интервалов для решения квадратных неравенств. Для облегчения усвоения материала мы рассмотрим большое количество примеров разной степени сложности.
Алгоритм применения метода интервалов
Рассмотрим алгоритм применения метода интервалов в адаптированном варианте, который пригоден для решения квадратных неравенств. Именно с таким вариантом метода интервалов знакомят учеников на уроках алгебры. Не будем усложнять задачу и мы.
Перейдем собственно к алгоритму.
У нас есть квадратный трехчлен из левой части квадратного неравенства. Находим нули из этого трехчлена.
В системе координат изображаем координатную прямую. Отмечаем на ней корни. Для удобства можем ввести разные способы обозначения точек для строгих и нестрогих неравенств. Давайте договоримся, что «пустыми» точками мы будем отмечать координаты при решении строгого неравенства, а обычными точками - нестрогого. Отметив точки, мы получаем на координатной оси несколько промежутков.
Если на первом шаге мы нашли нули, то определяем знаки значений трехчлена для каждого из полученных промежутков. Если нули мы не получили, то производим это действие для всей числовой прямой. Отмечаем промежутки знаками «» или «».
Дополнительно мы будем вводить штриховку в тех случаях, когда будем решать неравенства со знаками или и или . В первом случае штриховка будет наноситься над промежутками, отмеченными «», во втором над участками, отмеченными «».
Отметив знаки значений трехчлена и нанеся штриховку над отрезками, мы получаем геометрический образ некоторого числового множества, которое фактически является решением неравенства. Нам остается лишь записать ответ.
Остановимся подробнее на третьем шаге алгоритма, который предполагает определение знака промежутка. Существует несколько подходов определения знаков. Рассмотрим их по порядку, начав с наиболее точного, хотя и не самого быстрого. Этот метод предполагает вычисление значений трехчлена в нескольких точках полученных промежутков.
Намного быстрее определить знаки можно с учетом следующих фактов.
При положительном дискриминанте квадратный трехчлен с двумя корнями дает чередование знаков его значений на промежутках, на которые разбивается числовая ось корнями этого трехчлена. Это значит, что нам вовсе не обязательно определять знаки для каждого из интервалов. Достаточно провести вычисления для одного и проставить знаки для остальных, учитывая принцип чередования.
При желании, можно и вовсе обойтись без вычислений, сделав выводы о знаках по значению старшего коэффициента. Если , то мы получаем последовательность знаков , а если – то .
У квадратных трехчленов с одним корнем, когда дискриминант равен нулю, мы получаем два промежутка на координатной оси с одинаковыми знаками. Это значит, что мы определяем знак для одного из промежутков и для второго ставим такой же.
Здесь также применим метод определения знака на основе значения коэффициента : если , то будет , а если , то.
Если квадратный трехчлен не имеет корней, то знаки его значений для всей координатной прямой совпадают как со знаком старшего коэффициента , так и со знаком свободного члена .
Например, если мы возьмем квадратный трехчлен , он не имеет корней (его дискриминант отрицательный). Коэффициент при есть отрицательное число , и свободный член тоже отрицателен. Это значит, что на промежутке его значения отрицательны.
Примеры решения квадратных неравенств
Рассмотрим примеры решения квадратных неравенств с использованием рассмотренного выше алгоритма.
Навигация по статьям