Loading [MathJax]/jax/element/mml/optable/Latin1Supplement.js
Автор статьи

Статью подготовили специалисты образовательного сервиса Zaochnik

Таблица производных. Доказательство формул

Содержание:
  1. Производная постоянной
  2. Производная степенной функции
  3. Производная показательной функции
  4. Производная логарифмической функции
  5. Производные тригонометрических функций
  6. Производные обратных тригонометрических функций
  7. Производные гиперболических функций

Приведем сводную таблицу для удобства и наглядности при изучении темы.

Константаy=C

(C)'=0

Степенная функция y=xp

(xp)'=p·xp-1

Показательная функцияy=ax

(ax)'=ax·ln 

В частности, приa=e имеем  y=ex

(ex)'=ex

Логарифмическая функция

(logax)'=1x·ln a

В частности, приa=e имеем  y=ln x

(ln x)'=1x

Тригонометрические функции

(sin x)'=cos x(cos x)'=-sin x(tgx)'=1cos2x(ctgx)'=-1sin2x

Обратные тригонометрические функции

(arcsin x)'=11-x2(arccos x)'=-11-x2(arctg x)'=11+x2(arcctg x)'=-11+x2

Гиперболические функции

(shx)'=chx(chx)'=shx(thx)'=1ch2x(cthx)'=-1sh2x

Разберем, каким образом были получены формулы указанной таблицы или, иначе говоря, докажем вывод формул производных для каждого вида функций.

Производная постоянной

Доказательство 1

Для того, чтобы вывести данную формулу, возьмем за основу определение производной функции в точке. Используем x0=x, где x принимает значение любого действительного числа, или, иначе говоря, x является любым числом из области определения функции f(x)=C. Составим запись предела отношения приращения функции к приращению аргумента при x0:

limx0f(x)x=limx0C-Cx=limx00x=0

Обратите внимание, что под знак предела попадает выражение 0x. Оно не есть неопределенность «ноль делить на ноль», поскольку в числителе записана не бесконечно малая величина, а именно нуль. Иначе говоря, приращение постоянной функции всегда есть нуль.

Итак, производная постоянной функции f(x)=C равна нулю на всей области определения.

Пример 1

Даны постоянные функции:

f1(x)=3,f2(x)=a, aR,f3(x)=4.13722,f4(x)=0,f5(x)=-87

Необходимо найти их производные.

Решение

Опишем заданные условия. В первой функции мы видим производную натурального числа 3. В следующем примере необходимо брать производную от а, где а - любое действительное число. Третий пример задает нам производную иррационального числа 4.13722, четвертый - производную нуля (нуль – целое число). Наконец, в пятом случае имеем производную рациональной дроби -87.

Ответ: производные заданных функций есть нуль при любом действительном x (на всей области определения)

f1'(x)=(3)'=0,f2'(x)=(a)'=0, aR,f3'(x)=4.13722'=0,f4'(x)=0'=0,f5'(x)=-87'=0

Производная степенной функции

Переходим к степенной функции и формуле ее производной, имеющей вид: (xp)'=p·xp-1, где показатель степени p является любым действительным числом.

Доказательство 2

Приведем доказательство формулы, когда показатель степени – натуральное число: p=1, 2, 3, 

Вновь опираемся на определение производной. Составим запись предела отношения приращения степенной функции к приращению аргумента:

(xp)'=limx0=(xp)x=limx0(x+x)p-xpx

Чтобы упростить выражение в числителе, используем формулу бинома Ньютона:

(x+x)p-xp=Cp0+xp+Cp1·xp-1·x+Cp2·xp-2·(x)2+...++Cpp-1·x·(x)p-1+Cpp·(x)p-xp==Cp1·xp-1·x+Cp2·xp-2·(x)2+...+Cpp-1·x·(x)p-1+Cpp·(x)p

Таким образом:

(xp)'=limx0(xp)x=limx0(x+x)p-xpx==limx0(Cp1·xp-1·x+Cp2·xp-2·(x)2+...+Cpp-1·x·(x)p-1+Cpp·(x)p)x==limx0(Cp1·xp-1+Cp2·xp-2·x+...+Cpp-1·x·(x)p-2+Cpp·(x)p-1)==Cp1·xp-1+0+0+...+0=p!1!·(p-1)!·xp-1=p·xp-1

Так, мы доказали формулу производной степенной функции, когда показатель степени – натуральное число.

Доказательство 3

Чтобы привести доказательство для случая, когда p - любое действительное число, отличное от нуля, используем логарифмическую производную (здесь следует понимать отличие от производной логарифмической функции). Чтобы иметь более полное понимание желательно изучить производную логарифмической функции и дополнительно разобраться с производной неявно заданной функции и производной сложной функции.

Рассмотрим два случая: когда x положительны и когда x отрицательны.

Итак, x>0. Тогда: xp>0. Логарифмируем равенство y=xp по основанию e и применим свойство логарифма:

y=xpln y=ln xpln y=p·ln x

На данном этапе получили неявно заданную функцию. Определим ее производную:

(ln y)'=(p·ln x)1y·y'=p·1xy'=p·yx=p·xpx=p·xp-1

Теперь рассматриваем случай, когда xотрицательное число.

Если показатель p есть четное число, то степенная функция определяется и при x<0, причем является четной: y(x)=-y((-x)p)'=-p·(-x)p-1·(-x)'==p·(-x)p-1=p·xp-1

Тогда xp<0 и возможно составить доказательство, используя логарифмическую производную.

Если p есть нечетное число, тогда степенная функция определена и при x<0, причем является нечетной: y(x)=-y(-x)=-(-x)p. Тогда xp<0, а значит логарифмическую производную задействовать нельзя. В такой ситуации возможно взять за основу доказательства правила дифференцирования и правило нахождения производной сложной функции:

y'(x)=(-(-x)p)'=-((-x)p)'=-p·(-x)p-1·(-x)'==p·(-x)p-1=p·xp-1

Последний переход возможен в силу того, что если p - нечетное число, то p-1 либо четное число, либо нуль (при p=1), поэтому, при отрицательных x верно равенство (-x)p-1=xp-1.

Итак, мы доказали формулу производной степенной функции при любом действительном p.

Пример 2

Даны функции:

f1(x)=1x23,f2(x)=x2-14,f3(x)=1xlog712

Определите их производные.

Решение

Часть заданных функций преобразуем в табличный вид y=xp, опираясь на свойства степени, а затем используем формулу:

f1(x)=1x23=x-23f1'(x)=-23·x-23-1=-23·x-53f2'(x)=x2-14=2-14·x2-14-1=2-14·x2-54f3(x)=1xlog712=x-log712f3'(x)=-log712·x-log712-1=-log712·x-log712-log77=-log712·x-log784

Производная показательной функции

Доказательство 4

Выведем формулу производной, взяв за основу определение:

(ax)'=limx0ax+x-axx=limx0ax(ax-1)x=ax·limx0ax-1x=00

Мы получили неопределенность. Чтобы раскрыть ее, запишем новую переменную z=ax-1 (z0 при x0). В таком случае ax=z+1x=loga(z+1)=ln(z+1)ln a. Для последнего перехода использована формула перехода к новому основанию логарифма.

Осуществим подстановку в исходный предел:

(ax)'=ax·limx0ax-1x=ax·ln a·limx011z·ln(z+1)==ax·ln a·limx01ln(z+1)1z=ax·ln a·1lnlimx0(z+1)1z

Вспомним второй замечательный предел и тогда получим формулу производной показательной функции:

(ax)'=ax·ln a·1lnlimz0(z+1)1z=ax·ln a·1ln e=ax·ln a

Пример 3

Даны показательные функции:

f1(x)=23x,f2(x)=53x,f3(x)=1(e)x

Необходимо найти их производные.

Решение

Используем формулу производной показательной функции и свойства логарифма:

f1'(x)=23x'=23x·ln23=23x·(ln 2-ln 3)f2'(x)=53x'=53x·ln 513=13·53x·ln 5f3'(x)=1(e)x'=1ex'=1ex·ln1e=1ex·ln e-1=-1ex

Производная логарифмической функции

Доказательство 5

Приведем доказательство формулы производной логарифмической функции для любых x в области определения и любых допустимых значениях основания а логарифма. Опираясь на определение производной, получим:

(logax)'=limx0loga(x+x)-logaxx=limx0logax+xxx==limx01x·loga1+xx=limx0loga1+xx1x==limx0loga1+xx1x·xx=limx01x·loga1+xxxx==1x·logalimx01+xxxx=1x·logae=1x·ln eln a=1x·ln a

Из указанной цепочки равенств видно, что преобразования строились на основе свойства логарифма. Равенство limx01+xxxx=e является верным в соответствии со вторым замечательным пределом.

Пример 4

Заданы логарифмические функции:

f1(x)=logln3 x,f2(x)=ln x

Необходимо вычислить их производные.

Решение

Применим выведенную формулу:

f1'(x)=(logln3 x)'=1x·ln(ln 3);f2'(x)=(ln x)'=1x·ln e=1x

Итак, производная натурального логарифма есть единица, деленная на x.

Производные тригонометрических функций

Доказательство 6

Используем некоторые тригонометрические формулы и первый замечательный предел, чтобы вывести формулу производной тригонометрической функции.

Согласно определению производной функции синуса, получим:

(sin x)'=limx0sin (x+x)-sin xx

Формула разности синусов позволит нам произвести следующие действия:

(sin x)'=limx0sin (x+x)-sin xx==limx02·sin x+x-x2·cosx+x+x2x==limx0sin x2·cosx+x2x2==cosx+02·limx0sin x2x2

Наконец, используем первый замечательный предел:

sin' x=cos x+02·limx0sinx2x2=cos x

Итак, производной функции sin x будет cos x.

Совершенно также докажем формулу производной косинуса:

cos' x=limx0cos (x+x)-cos xx==limx0-2·sin x+x-x2·sinx+x+x2x==-limx0sinx2·sinx+x2x2==-sinx+02·limx0sinx2x2=-sin x

Т.е. производной функции cos x будет sin x.

Формулы производных тангенса и котангенса выведем на основе правил дифференцирования:

tg'x=sin xcos x'=sin' x·cos x-sin x·cos' xcos2 x==cos x·cos x-sin x·(-sin x)cos2 x=sin2 x+cos2 xcos2 x=1cos2 xctg'x=cos xsin x'=cos'x·sin x-cos x·sin'xsin2 x==-sin x·sin x-cos x·cos xsin2 x=-sin2 x+cos2 xsin2 x=-1sin2 x

Производные обратных тригонометрических функций

Раздел о производной обратных функций дает исчерпывающую информацию о доказательстве формул производных арксинуса, арккосинуса, арктангенса и арккотангенса, поэтому дублировать материал здесь не будем.

Производные гиперболических функций

Доказательство 7

Вывод формул производных гиперболического синуса, косинуса, тангенса и котангенса осуществим при помощи правила дифференцирования и формулы производной показательной функции:

sh'x=ex-e-x2'=12ex'-e-x'==12ex--e-x=ex+e-x2=chxch'x=ex+e-x2'=12ex'+e-x'==12ex+-e-x=ex-e-x2=shxth'x=shxchx'=sh'x·chx-shx·ch'xch2x=ch2x-sh2xch2x=1ch2xcth'x=chxshx'=ch'x·shx-chx·sh'xsh2x=sh2x-ch2xsh2x=-1sh2x

Рекомендуется выучить формулы из таблицы производных: они не столь сложны для запоминания, но экономят много времени, когда необходимо решать задачи дифференцирования.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Сохранить статью удобным способом

Навигация по статьям

Наши социальные сети
Не получается написать работу самому?
Доверь это кандидату наук!
Связаться через
Я принимаю условия пользовательского соглашения и  политики приватности, а также даю свое согласие на обработку моих персональных данных
Выполненные работы по математике
  • Математика

    Линейная алгебра и геометрия Теория вероятностей

    • Вид работы:

      Контрольная работа

    • Выполнена:

      17 мая 2012

    • Стоимость:

      600 руб.

    Заказать такую же работу
  • Математика

    теория вероятности

    • Вид работы:

      Контрольная работа

    • Выполнена:

      16 апреля 2012

    • Стоимость:

      500 руб.

    Заказать такую же работу
  • Математика

    теория вероятности

    • Вид работы:

      Контрольная работа

    • Выполнена:

      16 апреля 2012

    • Стоимость:

      500 руб.

    Заказать такую же работу
  • Математика

    исследование функции и построение графика

    • Вид работы:

      Контрольная работа

    • Выполнена:

      27 марта 2012

    • Стоимость:

      200 руб.

    Заказать такую же работу
  • Математика

    две контрольных работы

    • Вид работы:

      Контрольная работа

    • Выполнена:

      25 января 2012

    • Стоимость:

      1 100 руб.

    Заказать такую же работу
  • Математика

    контрольная работа

    • Вид работы:

      Контрольная работа

    • Выполнена:

      24 января 2012

    • Стоимость:

      700 руб.

    Заказать такую же работу