Статью подготовили специалисты образовательного сервиса Zaochnik
Равносильные уравнения, преобразование уравнений
- 11 мая 2023
- 6 минут
- 4 391
Некоторые преобразования позволяют нам перейти от решаемого уравнения к равносильным, а также к уравнениям-следствиям, благодаря чему упрощается решение первоначального уравнения. В данном материале мы расскажем, что из себя представляют эти уравнения, сформулируем основные определения, проиллюстрируем их наглядными примерами и поясним, как именно осуществляется вычисление корней исходного уравнения по корням уравнения-следствия или равносильного уравнения.
Понятие равносильных уравнений
Равносильными называются такие уравнения, имеющие одни и те же корни, или же те, в которых корней нет.
Определения такого типа часто встречаются в различных учебниках. Приведем несколько примеров.
Уравнение считается равносильным уравнению , если у них одинаковые корни или у них обоих нет корней.
Уравнения с одинаковыми корнями считаются равносильными. Также ими считаются два уравнения, одинаково не имеющие корней.
Если уравнение имеет то же множество корней, что и уравнение , то они считаются равносильными по отношению друг к другу.
Когда мы говорим о совпадающем множестве корней, то имеем в виду, что если определенное число будет корнем одного уравнения, то оно подойдет в качестве решения и другому уравнению. Ни одно из уравнений, являющихся равносильными, не может иметь такого корня, который не подходит для другого.
Приведем несколько примеров таких уравнений.
Например, равносильными будут и , поскольку каждое из них имеет только один корень – двойку. Также равносильными будут и , поскольку их корнями могут быть любые числа, то есть множества их решений совпадают. Также равносильными будут уравнения и , каждое из которых не имеет ни одного решения.
Для наглядности рассмотрим несколько примеров неравносильных уравнений.
К примеру, таковыми будут и, поскольку их корни отличаются. То же относится и к уравнениям и , потому что во втором решением может быть любое число, а во втором корнем не может быть .
Определения, данные выше, подойдут и для уравнений с несколькими переменными, однако в том случае, когда мы говорим о двух, трех и более корнях, более уместно выражение «решение уравнения». Таким образом, подытожим: равносильные уравнения – это те уравнения, у которых одни и те же решения или их совсем нет.
Возьмем примеры уравнений, которые содержат несколько переменных и являются равносильными друг другу. Так, и включают в себя по три переменных и имеют только одно решение, равное , во всех трех случаях. А пара уравнений и равносильной по отношению друг к другу не будет, поскольку, например, значения и подойдут для первого, но не будут решением второго: при подстановке их в первое уравнение мы получим верное равенство, а во второе – неверное.
Понятие уравнений-следствий
Процитируем несколько примеров определений уравнений-следствий, взятых из учебных пособий.
Следствием уравнения будет уравнение при условии, что каждый корень первого уравнения будет в то же время корнем второго.
Если первое уравнение имеет те же корни, что и второе, то второе будет уравнением-следствием первого.
Возьмем несколько примеров таких уравнений.
Так, будет следствием , поскольку в первом есть только один корень, равный трем, и он же будет корнем второго уравнения, поэтому в контексте данного определения одно уравнение будет следствием другого. Еще один пример: уравнение будет следствием , потому что второе уравнение имеет два корня, равные и , которые в то же время будут корнями первого.
Из данного выше определения можно сделать вывод, что следствием любого уравнения, не имеющего корней, будет также любое уравнение. Приведем здесь некоторые другие следствия из всех сформулированных в данной статье правил:
- Если одно уравнение равносильно другому, то каждое из них будет следствием другого.
- Если из двух уравнений каждое будет следствием другого, то данные уравнения будут равносильны друг другу.
- Уравнения будут равносильны по отношению друг к другу только в том случае, если каждое из них будет следствием другого.
Как найти корни уравнения по корням уравнения-следствия или равносильного уравнения
Исходя из того, что мы написали в определениях, то в случае, когда мы знаем корни одного уравнения, то нам известны и корни равносильных ему, поскольку они будут совпадать.
Если мы знаем все корни уравнения-следствия, то можем определить корни второго уравнения, следствием которого оно является. Для этого нужно только отсеять посторонние корни. О том, как это делается, мы написали отдельную статью. Советуем вам ее прочитать.