Автор статьи

Статью подготовили специалисты образовательного сервиса Zaochnik.

Формулы половинного угла в тригонометрии

Формулы половинного угла (аргумента) представляют собой противоположность формулам двойного угла , так как они выражают синус, косинус, тангенс и котангенс угла α2 при помощи тригонометрических функций угла α. В статье раскрыты формулы половинного угла и добавлены их доказательства с примерами решений.

Список формул половинного угла

Стандартные формулы половинного угла:

sin2α2=1-cosα2cos2α2=1+cosα2tg2α2=1-cosα1+cosαctg2α2=1+cosα1-cosα

Формулы для sin и cos половинного угла справедливы при любом значении заданного угла α. Формулу для tg любого угла αопределяет tgα2, значение угла απ+2π·z при z равном любому целому числу ( выражение 1+cosα с таким же значением α не должно принимать значение 0). Формула ctg угла считается справедливой для любого угла α, где половинный угол имеет место быть, α2π·z.

Самые значимые формулы половинного угла для квадратов тригонометрических функций выводятся через положительное или отрицательное значение арифметического квадратного корня. Имеем формулы половинного угла:

sinα2=±1-cosα2, cosα2=±1+cosα2, tgα2=±1-cosα1+cosα, ctgα2=±1+cosα1-cosα

Знак «-» указывает, что тригонометрическая функция принадлежит определенной четверти угла α2.

Применим формулы на практике.

Доказательство формул половинного угла

Доказательство формул половинного угла основывается на формулах cos двойного угла cosα=1-2·sin2α2 и cosα=2·cos2α2-1. Упростив первое выражение по sin2α2, получим саму формулу половинного угла sin2α2=1-cosα2, второе выражение по cos2α2 получим cos2α2=1+cosα2.

Чтобы доказать формулы половинного угла для tg и ctg угла α2, необходимо применить основные тригонометрические тождества tgα2=sinα2cosα2 и ctgα2=cosα2sinα2, к ним необходимо добавить формулы половинного угла cos и sin, которые доказали выше. При подстановке получим выражения, имеющие вид:

tg2α2=sin2α2cos2α2=1-cosα21+cosα2=1-cosα1+cosα;ctg2α2=cos2α2sin2α2=1-cosα21+cosα2=1+cosα1-cosα;

Все формулы половинного угла были доказаны.

Примеры использования

Покажем применение формул половинного угла при решении примера.

Пример 1

Известно, что cos30°=32. Необходимо вычислить значение cos 15 градусов, используя формулы половинного угла.

Решение

Данный пример рассматривает применение формулы половинного угла для косинуса, имеющей вид cos2α2=1+cosα2.

Следуя из условия, подставляем числовые значения и получаем: cos215°=1+cos30°2=1+322=2+34. После получения значения косинуса 15 градусов, необходимо найти само значение косинуса. Для этого вспомним, что угол в 15 градусов принадлежит первой четверти. Там косинус угла имеет положительное значение ( чтобы вспомнить знаки тригонометрических функций, необходимо повторить теорию знаков синуса, косинуса, тангенса и котангенса по четвертям). Следуя из вышесказанного, имеем cos215°=2+34, тогда cos 15°=2+34=2+32. Ответ: cos 15°=2+32.

Применяя формулу половинного угла, стоит учитывать тот факт, что угол может быть не явного вида α2 и α, а потребует дальнейшего приведения к стандартному виду. Главное условие – нахождение аргумента в правой части формул половинного угла было в 2 раза больше, чем в левой. Иначе применение формулы будет невозможно.

Если формула позволит записывать данное равенство таким образом sin27α=1-cos14α2 или sin2 5α17=1-cos10α172, то формула будет применима.

Для правильного преобразования и применения формул половинного аргумента необходимо досконально изучить свойства тригонометрических функций. Не любое выражение поддается такому преобразованию в тригонометрии. Необходимо внимательно следить за значениями углов тригонометрических функций и их нахождение в четвертях для определения знака для выражения.

Все формулы половинного угла в тригонометрии:

Примеры использования

Примеры использования

 

 

Навигация по статьям

Выполненные работы по математике
  • Математика

    Линейная алгебра и геометрия Теория вероятностей

    • Вид работы:

      Контрольная работа

    • Выполнена:

      17 мая 2012

    • Стоимость:

      600 руб

    Заказать такую же работу
  • Математика

    теория вероятности

    • Вид работы:

      Контрольная работа

    • Выполнена:

      16 апреля 2012

    • Стоимость:

      500 руб

    Заказать такую же работу
  • Математика

    теория вероятности

    • Вид работы:

      Контрольная работа

    • Выполнена:

      16 апреля 2012

    • Стоимость:

      500 руб

    Заказать такую же работу
  • Математика

    исследование функции и построение графика

    • Вид работы:

      Контрольная работа

    • Выполнена:

      27 марта 2012

    • Стоимость:

      200 руб

    Заказать такую же работу
  • Математика

    две контрольных работы

    • Вид работы:

      Контрольная работа

    • Выполнена:

      25 января 2012

    • Стоимость:

      1 100 руб

    Заказать такую же работу
  • Математика

    контрольная работа

    • Вид работы:

      Контрольная работа

    • Выполнена:

      24 января 2012

    • Стоимость:

      700 руб

    Заказать такую же работу