Автор статьи

Статью подготовили специалисты образовательного сервиса Zaochnik.

Основные тригонометрические тождества: их формулировки и вывод

В статье подробно рассказывается об основных тригонометрических тождествах. Эти равенства устанавливают связь между sin, cos, tg, ctg заданного угла. При известной одной функции можно через нее найти другую.

Тригонометрические тождества для рассмотрения в денной статье. Ниже покажем пример их выведения с объяснением.

sin2α+cos2α=1tg α=sin αcos α, ctg α=cos αsin αtg α·ctg α=1tg2α+1=1cos2α, 1+ctg2α=1sin2α

Связь между sin и cos одного угла

Поговорим о важном тригонометрическом тождестве, которое считается основой основ в тригонометрии.

sin2α+cos2α=1

Заданные равенства tg2α+1=1cos2α, 1+ctg2α=1sin2α выводят из основного путем деления обеих частей на sin2α и cos2α. После чего получаем tg α=sin αcos α, ctg α=cos αsin α и tg α·ctg α=1 - это следствие определений синуса, косинуса, тангенса и котангенса.

Равенство sin2α+cos2α=1 является основным тригонометрическим тождеством. Для его доказательства необходимо обратиться к теме с единичной окружностью .

Пусть даны координаты точки А(1,0), которая после поворота на угол αстановится в точку А1. По определению sin и cos точка А1 получит координаты (cos α, sin α). Так как А1 находится в пределах единичной окружности, значит, координаты должны удовлетворят условию x2+y2=1 этой окружности. Выражение cos2α+sin2α=1 должно быть справедливым. Для этого необходимо доказать основное тригонометрическое тождество для всех углов поворота α.

В тригонометрии выражение sin2α+cos2α=1 применяют как теорему Пифагора в тригонометрии. Для этого рассмотрим подробное доказательство.

Используя единичную окружность, поворачиваем точку А с координатами (1,0) вокруг центральной точки О на угол α. После поворота точка меняет координаты и становится равной А1(х,у). Опускаем перпендикулярную прямую А1Н на Ох из точки А1.

Связь между sin и cos одного угла

На рисунке отлично видно, что образовался прямоугольный треугольник ОА1Н. По модулю катеты ОА1Н и ОН равные, запись примет такой вид: |А1H|=|у|,|ОН|=|х|. Гипотенуза ОА1 имеет значение равное радиусу единичной окружности, |ОА1|=1. Используя данное выражение, можем записать равенство по теореме Пифагора: |А1Н|2 +|ОН|2 =|ОА1|2. Это равенство запишем как |y|2+|x|2=12, что означает y2+x2=1.

Используя определение sin α=y и cosα=x, подставим данные угла вместо координат точек и перейдем к неравенству sin2α+cos2α=1.

Основная связь между sin и cos угла возможна через данное тригонометрическое тождество. Таким образом, можно считать sin угла с известным cos и наоборот. Чтобы выполнить это, необходимо разрешать sin2α+cos2=1 относительно sin и cos, тогда получим выражения вида sin α=±1-cos2α и cos α=±1-sin2α соответственно. Величина угла αопределяет знак перед корнем выражения. Для подробного выяснения необходимо прочитать раздел вычисление синуса, косинуса, тангенса и котангенса с использованием тригонометрических формул.

Чаще всего основную формулу применяют для преобразований или упрощений тригонометрических выражений. Имеется возможность заменять сумму квадратов синуса и косинуса на 1. Подстановка тождества может быть как в прямом, так и обратном порядке: единицу заменяют на выражение суммы квадратов синуса и косинуса.

Тангенс и котангенс через синус и косинус

Из определения косинуса и синуса, тангенса и котангенса видно, что они взаимосвязаны друг с другом, что позволяет отдельно преобразовывать необходимые величины.

tg α=sin αcos αctg α=cos αsin α

Из определения синус является ординатой у, а косинус – абсциссой x. Тангенс – это и есть отношения ординаты и абсциссы. Таким образом имеем:

tg α=yx=sin αcos α, а выражение котангенса имеет обратное значение, то есть

ctg α=xy=cos αsin α.

Отсюда следует, что полученные тождества tg α=sin αcos α и ctg α=cos αsin α задаются с помощью sin и cos углов. Тангенс считаются отношением синуса к косинусу угла между ними, а котангенс наоборот.

Отметим, что tg α=sin αcos α и ctg α=cos αsin α верны для любого значение угла α, значения которого входят в диапазон. Из формулы tg α=sin αcos α значение угла α отлично от π2+π·z, а ctg α=cos αsin α принимает значение угла α, отличные от π·z, z принимает значение любого целого числа.

Связь между тангенсом и котангенсом

Имеется формула, которая показывает связь между углами через тангенс и котангенс. Данное тригонометрическое тождество является важным в тригонометрии и обозначается как tg α·ctg α=1. Оно имеет смысл при α с любым значением, кроме π2·z, иначе функции будут не определены.

Формула tg α·ctg α=1 имеет свои особенности в доказательстве. Из определения мы имеем, что tg α=yx и ctg α=xy, отсюда получаем tg α·ctg α=yx·xy=1. Преобразовав выражение и подставив tg α=sin αcos α и ctg α=cos αsin α, получим tg α·ctg α=sin αcos α·cos αsin α=1.

Тогда выражение тангенса и котангенса имеет смысл того, когда в итоге получаем взаимно обратные числа.

Тангенс и косинус, котангенс и синус

Преобразовав основные тождества, приходим к выводу, что тангенс связан через косинус, а котангенс через синус. Это видно по формулам tg2α+1=1cos2α, 1+ctg2α=1sin2α.

Определение звучит так: сумма квадрата тангенса угла и 1 приравнивается к дроби , где в числителе имеем 1, а в знаменателе квадрат косинуса данного угла, а сумма квадрата котангенса угла наоборот. Благодаря тригонометрическому тождеству sin2α+cos2α=1, можно разделить соответствующие стороны на cos2α и получить tg2α+1=1cos2α, где значение cos2α не должно равняться нулю. При делении на sin2α получим тождество 1+ctg2α=1sin2α, где значение sin2α не должно равняться нулю.

Из приведенных выражений получили, что тождество tg2α+1=1cos2α верно при всех значениях угла α, не принадлежащих π2+π·z, а 1+ctg2α=1sin2α при значениях α, не принадлежащих промежутку π·z.

Навигация по статьям

Выполненные работы по математике
  • Математика

    Линейная алгебра и геометрия Теория вероятностей

    • Вид работы:

      Контрольная работа

    • Выполнена:

      17 мая 2012

    • Стоимость:

      600 руб

    Заказать такую же работу
  • Математика

    теория вероятности

    • Вид работы:

      Контрольная работа

    • Выполнена:

      16 апреля 2012

    • Стоимость:

      500 руб

    Заказать такую же работу
  • Математика

    теория вероятности

    • Вид работы:

      Контрольная работа

    • Выполнена:

      16 апреля 2012

    • Стоимость:

      500 руб

    Заказать такую же работу
  • Математика

    исследование функции и построение графика

    • Вид работы:

      Контрольная работа

    • Выполнена:

      27 марта 2012

    • Стоимость:

      200 руб

    Заказать такую же работу
  • Математика

    две контрольных работы

    • Вид работы:

      Контрольная работа

    • Выполнена:

      25 января 2012

    • Стоимость:

      1 100 руб

    Заказать такую же работу
  • Математика

    контрольная работа

    • Вид работы:

      Контрольная работа

    • Выполнена:

      24 января 2012

    • Стоимость:

      700 руб

    Заказать такую же работу