Автор статьи

Статью подготовили специалисты образовательного сервиса Zaochnik.

Деление отрезка в заданном соотношении: координаты точки

Содержание:

Когда существуют условия деления отрезка в определенном отношении, необходимо уметь определять координаты точки, служащей разделителем. Выведем формулу для нахождения этих координат, поставив задачу на плоскости.

Определение координат точки, делящей отрезок в заданном отношении, на плоскости

Исходные данные: задана прямоугольная система координат Oxy и две лежащие на ней, несовпадающие точки с заданными координатами A(xA,yA) и B(xB,yB) . А также задана точка С, делящая отрезок АВ в отношении λ (некоторое положительное действительное число). Необходимо определить координаты точки СxC и yC .

Перед тем, как приступить к решению поставленной задачи, немного раскроем смысл заданного условия: «точка С, делящая отрезок АВ в отношении λ». Во-первых, это выражение свидетельствует о том, что точка С лежит на отрезке АВ (т.е. между точками А и В). Во-вторых, понятно, что согласно заданному условию отношение длин отрезков АС и СВ равно λ. Т.е. верно равенство:

ACCB=λ .

В этом случае точка А – начало отрезка, точка В – конец отрезка. Если бы было задано, что точка С делит в заданном отношении отрезок ВА, тогда верным было бы равенство: .

Ну и совсем очевидный факт, что если λ = 1, то точка С является серединой отрезка АВ.

Решим поставленную задачу при помощи векторов. Отобразим произвольно в некой прямоугольной системе координат точки А, В и точку С на отрезке АВ. Построим радиус-векторы указанных точек, а также векторы AC и CB . Согласно условиям задачи, точка С делит отрезок АВ в отношении λ.

Определение координат точки, делящей отрезок в заданном отношении, на плоскости

Координаты радиус-вектора точки равны координатам точки, тогда верны равенства: OA=(xA, yA) и OB= (xB , yB) .

Определим координаты вектора : они будут равны координатам точки С, которые и требуется найти по условию задачи.

Используя операцию сложения векторов, запишем равенства: OC=OA+AC    OB=OC+CBCB=OB-OC

По условию задачи точка С делит отрезок АВ в отношении λ, т.е. верно равенство AC=λ·CB .

Векторы AC и CB лежат на одной прямой и являются сонаправленными. λ > 0 по условию задачи, тогда, согласно операции умножения вектора на число, получим: AC =λ·CB .

Преобразуем выражение, подставив в него : CB=OB-OC .

AC=λ·(OB-OC) .

Равенство OC=OA+AC перепишем как OC=OA+λ·(OB-OC) .

Используя свойства операций над векторами, из последнего равенства следует: OC=11+λ·(OA+λ·OB) .

Теперь нам остается непосредственно вычислить координаты вектора OC=11+λ·OA+λ·OB .

Выполним необходимые действия над векторами OA и OB .

OA =(xA , yA) и OB = (xB , yB) , тогда OA+λ·OB = (xA+λ·xB, yA+λ·yB) .

Таким образом, OC=11+λ·(OA+λ·OB) = (xA+λ·xB1+λ , yA+λ·yB1+λ) .

Резюмируя: координаты точки С, делящей отрезок АВ в заданном отношении λ определяются по формулам : xC = xA+λ·xB1+λ и  yC=уA+λ·yB1+λ .

Определение координат точки, делящей отрезок в заданном отношении, в пространстве 

Исходные данные: прямоугольная система координат Oxyz, точки с заданными координатами A (xA , yA , zA) и B (xB , yB , zB) .

Точка С делит отрезок АВ в отношении λ. Необходимо определить координаты точки С.

Используем ту же схему рассуждений, что и в случае выше на плоскости, придем к равенству:

OC =11+λ·(OA+λ·OB)

Векторы и являются радиус-векторами точек А и В, а значит:

OA= (xA , yA , zA) и OB=(xB , yB , zB), следовательно

OC=11+λ·(OA+λ·OB) = (xA +λ·xB1+λ , yA +λ ·yB1+λ , zA + λ·zB1+λ)

Таким образом, точка С, делящая отрезок АВ в пространстве в заданном отношении λ, имеет координаты: (xA+λ·xB1+λ , yA+λ·yB1+λ , zA + λ·zB1+λ)

Рассмотрим теорию на конкретных примерах.

Пример 1

Исходные данные: точка С делит отрезок АВ в отношении пять к трем. Координаты точек А и В заданы A (11, 1, 0) , B(-9, 2, -4).

Решение 

По условию задачи λ = 53 . Применим полученные выше формулы и получим:

xA+λ·xB1+λ=11+53·(-9)1+53=-32

yA+λ·yB1+λ= 1+53·21+53=138

zA+λ·zB1+λ=0+53·(-4)1+53= -52

Ответ: C (-32 , 138 ,- 52)

Пример 2

Исходные данные: необходимо определить координаты центра тяжести треугольника АВС.

Заданы координаты его вершин: A(2, 3, 1),  B(4, 1, -2),  C(-5, -4, 8)

Решение

Известно, что центром тяжести любого треугольника является точка пересечения его медиан (пусть это будет точка М). Каждая из медиан делится точкой М в отношении 2 к 1, считая от вершины. Исходя из этого, найдем ответ на поставленный вопрос.

Допустим, что АD – медиана треугольника АВС. Точка М – точка пересечения медиан, имеет координаты M (xM , yM , zM ) и является центром тяжести треугольника. М, как точка пересечения медиан, делит отрезок АD в отношении 2 к 1, т.е. λ = 2.

Найдем координаты точки D. Так как AD – медиана, то точка D – середина отрезка ВС. Тогда, используя формулу нахождения координат середины отрезка, получим:

xD=xB+xC2=4+(-5)2 =- 12yD=yB+yC2=1+(-4)2= -32zD=zB+zC2=-2+82=3

Вычислим координаты точки М:

xM=xA+λ·xD1+λ=2+2·(-12)1+2=13

yM=yA+λ·yD1+λ = 3+2·(-32)1+2=0

zM=zA+λ·zD1+λ=1+2·31+2=73

Ответ: (13, 0 , 73)

Навигация по статьям

Выполненные работы по математике
  • Математика

    Формирование вычислительных навыков на уроках математики в начальной школе.

    • Вид работы:

      Курсовая

    • Выполнена:

      14 июля 2022 г.

    • Стоимость:

      2 580 руб

    Заказать такую же работу
  • Математика

    Роль геометрии в развитии научного мышления

    • Вид работы:

      Эссе

    • Выполнена:

      19 мая 2022 г.

    • Стоимость:

      300 руб

    Заказать такую же работу
  • Математика

    Геометрия в повседневной жизни

    • Вид работы:

      Эссе

    • Выполнена:

      18 мая 2022 г.

    • Стоимость:

      800 руб

    Заказать такую же работу
  • Математика

    Значение геометрии в современном мире

    • Вид работы:

      Эссе

    • Выполнена:

      17 мая 2022 г.

    • Стоимость:

      400 руб

    Заказать такую же работу
  • Математика

    Методы обучения математике

    • Вид работы:

      Эссе

    • Выполнена:

      16 мая 2022 г.

    • Стоимость:

      500 руб

    Заказать такую же работу
  • Математика

    Проблемы и перспективы современного школьного математического образования

    • Вид работы:

      Эссе

    • Выполнена:

      15 мая 2022 г.

    • Стоимость:

      650 руб

    Заказать такую же работу