Действия с дробями: правила, примеры, решения

Статью подготовили специалисты образовательного сервиса Zaochnik.

Содержание:

Данная статья рассматривает действия над дробями. Будут  сформированы и обоснованы правила сложения, вычитания, умножения, деления или возведения в степень дробей вида , где  и  могут быть числами, числовыми выражениями или выражениями с переменными. В заключении будут рассмотрены примеры решения с подробным описанием.

Правила выполнения действий с числовыми дробями общего вида

Числовые дроби общего вида имеют числитель и знаменатель, в которых имеются натуральные числа или числовые выражения. Если рассмотреть такие дроби, как , то видно, что числитель и знаменатель может иметь не только числа, но и выражения различного плана.

Определение 1

Существуют правила, по которым идет выполнение действий с обыкновенными дробями. Оно подходит и для дробей общего вида:

  • При вычитании дробей с одинаковыми знаменателями складываются только числители, а знаменатель остается прежним, а именно: , значения  и  являются некоторыми числами или числовыми выражениями.
  • При сложении или вычитании дроби при разных знаменателях, необходимо произвести приведение к общему, после чего произвести сложение или вычитание полученных дробей с одинаковыми показателями.  Буквенно это выглядит таком образом , где значения  являются действительными числами, . Когда  и , тогда .
  • При умножении дробей выполняется действие с числителями, после чего со знаменателями, тогда получим , где  выступают в роли действительных чисел.
  • При делении дроби на дробь первую умножаем на вторую обратную, то есть производим замену местами числителя и знаменателя: .

Обоснование правил

Определение 2

Существуют следующие математические моменты, на которые следует опираться при вычислении:

  • дробная черта означает знак деления;
  • деление на число рассматривается как умножение на его обратное значение;
  • применение свойства действий с действительными числами;
  • применение основного свойства дроби и числовых неравенств.

С их помощью можно производить преобразования вида:

Примеры

В предыдущем пункте было сказано про действия с дробями. Именно после этого дробь нуждается в упрощении. Подробно эта тема была рассмотрена в пункте о преобразовании дробей.

Для начала рассмотрим пример сложения и вычитания дробей с одинаковым знаменателем.

Пример 1

Даны дроби  и , то по правилу необходимо числитель сложить, а знаменатель переписать.

Решение

Тогда получаем дробь вида . После выполнения сложения получаем дробь вида . Значит, .

Ответ: 

Имеется другой способ решения. Для начала производится переход к виду обыкновенной дроби, после чего выполняем упрощение. Это выглядит таким образом:

Пример 2

Произведем вычитание из  дроби вида .

Так как даны равные знаменатели, значит, что мы выполняем вычисление дроби при одинаковом знаменателе. Получим, что

Имеются примеры вычисления дробей с разными знаменателями. Важный пункт – это приведение к общему знаменателю. Без этого мы не сможем выполнять дальнейшие действия с дробями.

Процесс отдаленно напоминает приведение к общему знаменателю. То есть производится поиск наименьшего общего делителя в знаменателе, после чего добавляются недостающие множители к дробям.

Если складываемые дроби не имеют общих множителей, тогда им может стать их произведение.

Пример 3

Рассмотрим на примере сложения дробей  и 

Решение

В данном случае общим знаменателем выступает произведение знаменателей. Тогда получаем, что . Тогда при выставлении дополнительных множителей имеем, что к первой дроби он равен , а ко второй . После перемножения дроби приводятся к виду . Общее приведение  будет иметь вид . Полученные дробные выражения складываем и получаем, что

Ответ: 

Когда имеем дело с дробями общего вида, тогда о наименьшем общем знаменателе обычно дело не идет.  В качестве знаменателя нерентабельно принимать произведение числителей. Для начала необходимо проверить, имеется ли число, которое меньше по значению, чем их произведение.

Пример 4

Привести к общему наименьшему показателю   и 

Когда их произведение будет равно . Тогда  в качестве общего знаменателя берем .

Рассмотрим примеры умножений дробей общего вида.

Пример 5

Для этого необходимо произвести умножение  и 

Решение

Следую правилу, необходимо переписать и в виде знаменателя написать произведение числителей. Получаем, что .  Когда дробь будет умножена, можно производить сокращения для ее упрощения. Тогда .

Используя правило перехода от деления к умножению на обратную дробь, получим дробь, обратную данной. Для этого числитель и знаменатель меняются местами. Рассмотрим на примере:

 После чего должны выполнить умножение и упростить полученную дробь. Если необходимо, то избавиться от иррациональности в знаменателе. Получаем, что

Ответ: 

Данный пункт применим, когда число или числовое выражение может быть представлено в виде дроби, имеющую знаменатель, равный , тогда и действие с такой дробью рассматривается отдельным пунктом. Например, выражение  видно, что корень из  может быть заменен другим  выражением. Тогда эта запись будет выглядеть как умножение двух дробей вида .

Выполнение действие с дробями, содержащими переменные

Правила, рассмотренные в первой статье , применимы для действий с дробями, содержащими переменные. Рассмотрим правило вычитания, когда знаменатели одинаковые.

Необходимо доказать, что  и  ( не равное нулю) могут быть любыми выражениями, причем равенство  равноценно с его областью допустимых значений.

Необходимо взять набор переменных ОДЗ. Тогда   должны принимать соответственные значения  и .  Подстановка вида  приводит разность  вида , где по правилу сложения получаем формулу вида . Если подставить выражение , тогда получаем ту же дробь вида . Отсюда делаем вывод, что выбранное значение, удовлетворяющее ОДЗ,  и  считаются равными.

При любом значении переменных данные выражения будут равны, то есть их называют тождественно равными. Значит это выражение считается доказываемым равенством вида .

Примеры сложения и вычитания дробей с переменными

Когда имеются одинаковые знаменатели, необходимо только складывать или вычитать числители. Такая дробь может быть упрощена. Иногда приходится работать с дробями, которые являются тождественно равными, но при первом взгляде это  незаметно, так как необходимо выполнять некоторые преобразования. Например,  и  или  и . Чаще всего требуется упрощение исходного выражения для того, чтобы увидеть одинаковые знаменатели.

Пример 6

Вычислить:.

Решение

  1. Чтобы произвести вычисление, необходимо вычесть дроби, которым имеют одинаковые знаменатели. Тогда получаем, что .  После чего можно выполнять раскрытие скобок с приведением подобных слагаемых. Получаем, что
  2. Так как знаменатели одинаковые, то остается только сложить числители, оставив знаменатель:​​​​​​
    Сложение было выполнено. Видно, что можно произвести сокращение дроби.  Ее числитель может быть свернут по формуле квадрата суммы, тогда получим  из формул сокращенного умножения. Тогда получаем, что
  3.  Заданные дроби вида  с разными знаменателями. После преобразования можно перейти к сложению.

Рассмотрим двоякий способ решения.

Первый способ заключается в том, что знаменатель первой дроби подвергается разложению на множители при помощи квадратов, причем с ее последующим сокращением. Получим дробь вида

Значит, .

В таком случае необходимо избавляться от иррациональности в знаменателе.

Получим:

Второй способ заключается в умножении числителя и знаменателя второй дроби на выражение . Таким образом, мы избавляемся от иррациональности и переходим к сложению дроби при наличии одинакового знаменателя. Тогда

Ответ: .

В последнем примере получили, что приведение к общему знаменателю неизбежно. Для этого необходимо упрощать дроби. Для сложения или вычитая всегда необходимо искать общий знаменатель, который выглядит как произведение знаменателей  с добавлением дополнительных множителей к числителям.

Пример 7

Вычислить значения дробей: 

Решение

  1.  Никаких сложных вычислений знаменатель не требует, поэтому нужно выбрать их произведение вида , тогда к первой дроби  выбирают как дополнительный множитель, а  ко второй. При перемножении получаем дробь вида 
  2. Видно, что знаменатели представлены в виде произведения, что означает ненужность дополнительных преобразований. Общим знаменателем будет считаться  произведение вида . Отсюда  является дополнительным множителем к первой дроби, а  ко второй. После чего производим вычитание и получаем, что:
  3.  Данный пример имеет смысл при работе со знаменателями дробями. Необходимо применить формулы разности квадратов и квадрат суммы, так как именно они дадут возможность перейти к выражению вида .  Видно, что дроби приводятся к общему знаменателю. Получаем, что .

После чего получаем, что

Ответ:

.

Примеры умножения дробей с переменными

При умножении дробей числитель умножается на числитель, а знаменатель на знаменатель. Тогда можно применять свойство сокращения.

Пример 8

Произвести умножение дробей  и .

Решение

Необходимо выполнить умножение. Получаем, что

Число  переносится на первое место для удобства подсчетов, причем можно произвести сокращение дроби на , тогда получим выражение вида

Ответ: .

Деление

Деление у дробей аналогично умножению, так как первую дробь умножают на вторую обратную. Если взять к примеру дробь  и разделить на , тогда это можно записать таким образом, как

, после чего заменить произведением вида 

Возведение в степень

Перейдем к рассмотрению действия с дробями общего вида с возведением в степень. Если имеется степень с натуральным показателем, тогда действие рассматривают как умножение одинаковых дробей. Но рекомендовано  использовать общий подход, базирующийся на свойствах степеней. Любые выражения  и , где  тождественно не равняется нулю, а любое действительное  на ОДЗ для выражения вида  справедливо равенство . Результат – дробь, возведенная в степень. Для примера рассмотрим:

Порядок выполнения действий с дробями

Действия над дробями выполняются по определенным правилам. На практике замечаем, что выражение может содержать несколько дробей или дробных выражений. Тогда необходимо все действия выполнять  в строгом порядке: возводить в степень, умножать, делить, после чего складывать и вычитать. При наличии скобок первое действие выполняется именно в них.

Пример 9

Вычислить .

Решение

Так как имеем одинаковый знаменатель, то  и , но производить вычитания по правилу нельзя, сначала выполняются действия в скобках, после чего умножение, а потом сложение. Тогда при вычислении получаем, что

При подстановке выражения  в исходное получаем, что . При умножении дробей имеем: . Произведя все подстановки, получим . Теперь необходимо работать с дробями, которые имеют разные знаменатели. Получим:

Ответ: .

Математические онлайн-калькуляторы

Навигация по статьям

Выполненные работы по математике
  • Математика

    Линейная алгебра и геометрия Теория вероятностей

    • Вид работы:

      Контрольная работа

    • Выполнена:

      17 мая 2012

    • Стоимость:

      600 руб.

    Заказать такую же работу
  • Математика

    теория вероятности

    • Вид работы:

      Контрольная работа

    • Выполнена:

      16 апреля 2012

    • Стоимость:

      500 руб.

    Заказать такую же работу
  • Математика

    теория вероятности

    • Вид работы:

      Контрольная работа

    • Выполнена:

      16 апреля 2012

    • Стоимость:

      500 руб.

    Заказать такую же работу
  • Математика

    исследование функции и построение графика

    • Вид работы:

      Контрольная работа

    • Выполнена:

      27 марта 2012

    • Стоимость:

      200 руб.

    Заказать такую же работу
  • Математика

    две контрольных работы

    • Вид работы:

      Контрольная работа

    • Выполнена:

      25 января 2012

    • Стоимость:

      1 100 руб.

    Заказать такую же работу
  • Математика

    контрольная работа

    • Вид работы:

      Контрольная работа

    • Выполнена:

      24 января 2012

    • Стоимость:

      700 руб.

    Заказать такую же работу