Автор статьи

Статью подготовили специалисты образовательного сервиса Zaochnik.

Деление многочленов

Содержание:

В данной статье будут рассмотрены рациональные дроби, ее выделения целых частей. Дроби бывают правильными и неправильными. Когда  в дроби числитель меньше знаменателя – это правильная дробь,  а неправильная  наоборот.

Рассмотрим примеры правильных дробей: 12,929,817, неправильных: 163,2120,30124.

Будем вычислять дроби, которые могут сократиться, то есть 1216 - это 34, 2114- это 32.

При выделении целой части производится процесс деления числителя на знаменатель. Тогда такая дробь может быть представлена как сумма целой и дробной части, где дробная считается отношением остатка от деления и знаменателя.

Пример 1

Найти остаток при делении 27 на 4.

Решение

Необходимо произвести деление столбиком, тогда получим, что

Деление многочленов

Значит, 274=целая часть+остатокзнаменатель=6+34

Ответ: остаток 3.

Пример 2

Произвести выделение целых частей 33112 и 4157.

Решение

Производим деление знаменателя на числитель при помощи уголка:

Деление многочленов

Производим деление далее и получаем, что

Деление многочленов

Поэтому имеем, что 33112=27+712.

Вторая дробь является правильной, значит, целая часть равняется нулю.

Ответ: целые части 27 и 0.

Рассмотрим классификацию многочленов, иначе говоря, дробно-рациональную функцию. Ее считают правильной,  когда степень числителя меньше степени знаменателя, иначе ее считают неправильной.

Определение 1

Деление многочлена на многочлен происходит по принципу деления углом, а представление функции как сумма целой и дробной частей.

Чтобы разделить многочлен на линейный двучлен, используется схема Горнера.

Пример 3

Произвести деление x9+7x7-32x3-2 на одночлен 2x2.

Решение

Воспользовавшись свойством деления, запишем, что

x9+7x7-32x3-22x2=x92x2+7x72x2-32x32x2+x22x2-22x2==12x7+72x5-34x+12-22x-2.

Зачастую такого вида преобразования выполняются при взятии интегралов.

Пример 4

Произвести деление многочлена на многочлен: 2x3+3 на x3+x.

Решение

Знак деления можно записать в виде дроби вида 2x3+3x3+x. Теперь необходимо выделить целую часть. Производим это при помощи деления столбиком. Получаем, что

Деление многочленов

Значит, получаем, что целая часть имеет значение -2x+3, тогда все выражение записывается как 2x3+3x3+x=2+-2x+3x3+x

Пример 5

Разделить и найти остаток от деления 2x6-x5+12x3-72x2+3 на x3+2x2-1.

Решение

Зафиксируем дробь вида 2x6-x5+12x3-72x2+3x3+2x2-1.

Степень числителя больше, чем у знаменателя, значит, что у нас имеется неправильная дробь. При помощи деления столбиком выдели целую часть. Получаем, что

Деление многочленов

Произведем деление еще раз и получим:

Деление многочленов

Отсюда имеем, что остаток равняется -65x2+10x-3, отсюда следует:

2x6-x5+12x3-72x2+3x3+2x2-1=2x3-5x2+10x-6+-65x2+10x-3x3+2x2-1

Существуют случаи, где необходимо дополнительно выполнять преобразование дроби для того, чтобы можно было выявить остаток при делении. Это выглядит следующим образом:

3x5+2x4-12x2-4x3-3=3x2x3-3-3x2x3-3+3x5+2x4-12x2-4x3-3==3x2x3-3+2x4-3x2-4x3-3=3x2+2x4-3x2-4x3-3==3x2+2xx3-3-2xx3-3+2x4-3x2-4x3-3==3x2+2x(x3-3)-3x2+6x-4x3-3=3x2+2x+-3x2+6x-4x3-3

Значит, что остаток при делении 3x5+2x4-12x2-4 на x3-3 дает значение -3x2+6x-4. Для быстрого нахождения результата применяют формулы сокращенного умножения.

Пример 6

Произвести деление 8x3+36x2+54x+27 на 2x+3.

Решение

Запишем деление в виде дроби. Получим, что 8x3+36x2+54x+272x+3. Заметим, что в числителе выражение  можно сложить по формуле куба суммы. Имеем, что

8x3+36x2+54x+272x+3=(2x+3)32x+3=(2x+3)2=4x2+12x+9

Заданный многочлен делится без остатка.

Для решения используется более удобный метод решения, причем деление многочлена на многочлен считается максимально универсальным, поэтому часто используемым при выделении целой части. Итоговая запись должна содержать полученный многочлен от деления.

Навигация по статьям

Выполненные работы по информационным технологиям
  • Информационные технологии

    Эволюционное Моделирование

    • Вид работы:

      Презентация (PPT, PPS)

    • Выполнена:

      27 марта 2023 г.

    • Стоимость:

      2 200 руб

    Заказать такую же работу
  • Геометрия

    Геометрические формы и линии в современном мире

    • Вид работы:

      Презентация (PPT, PPS)

    • Выполнена:

      24 марта 2023 г.

    • Стоимость:

      1 400 руб

    Заказать такую же работу
  • Строительство

    металлические конструкции

    • Вид работы:

      Курсовая работа

    • Выполнена:

      15 марта 2023 г.

    • Стоимость:

      6 500 руб

    Заказать такую же работу
  • Начертательная геометрия

    Роль начертательной геометрии в д моделировании

    • Вид работы:

      Реферат

    • Выполнена:

      8 марта 2023 г.

    • Стоимость:

      1 300 руб

    Заказать такую же работу
  • Механика

    Дистанционный экзамен Естествознание

    • Вид работы:

      Дистанционный экзамен, онлайн-тест

    • Выполнена:

      23 февраля 2023 г.

    • Стоимость:

      2 200 руб

    Заказать такую же работу
  • Метрология

    Допуски на отверстия и валы

    • Вид работы:

      Домашняя работа

    • Выполнена:

      6 февраля 2023 г.

    • Стоимость:

      1 600 руб

    Заказать такую же работу
  • Не получается написать работу самому?

    Доверь это кандидату наук!