Статью подготовили специалисты образовательного сервиса Zaochnik
Сложение и вычитание алгебраических дробей: правила, примеры
- 12 марта 2023
- 11 минут
- 1 872
Данная статья начинает изучение действий с алгебраическими дробями: рассмотрим подробно такие действия как сложение и вычитание алгебраических дробей. Разберем схему сложения и вычитания алгебраических дробей как с одинаковыми знаменателями, так и с разными. Изучим, как сложить алгебраическую дробь с многочленом и как произвести их вычитание. На конкретных примерах поясним каждый шаг поиска решения задач.
Действия сложения и вычитания при одинаковых знаменателях
Схема сложения обыкновенных дробей применима и для алгебраических. Мы знаем, что при сложении или вычитании обыкновенных дробей с одинаковыми знаменателями необходимо сложить или вычесть их числители, а знаменатель остается исходным.
К примеру: и .
Соответственно аналогичным образом записывается правило сложения и вычитания алгебраических дробей с одинаковыми знаменателями:
Чтобы осуществить сложение или вычитание алгебраических дробей с одинаковыми знаменателями, нужно соответственно сложить или вычесть числители исходных дробей, а знаменатель записать без изменений.
Данное правило дает возможность сделать вывод, что результат сложения или вычитания алгебраических дробей - новая алгебраическая дробь (в частном случае: многочлен, одночлен или число).
Укажем пример применения сформулированного правила.
Заданы алгебраические дроби: и . Необходимо осуществить их сложение.
Решение
Исходные дроби содержат одинаковые знаменатели. Согласно правилу, выполним сложение числителей заданных дробей, а знаменатель оставим неизменным.
Сложив многочлены, являющиеся числителями исходных дробей, получим: .
Тогда искомая сумма будет записана как: .
В практике, как во многих случаях, решение приводится цепочкой равенств, наглядно показывающей все этапы решения:
Ответ: .
Результатом сложения или вычитания может стать сократимая дробь, в этом случае оптимально ее сократить.
Необходимо вычесть из алгебраической дроби дробь .
Решение
Знаменатели исходных дробей равны. Произведем действия с числителями, а именно: вычтем из числителя первой дроби числитель второй, после чего запишем результат, оставляя знаменатель неизменным:
Мы видим, что полученная дробь – сократимая. Осуществим ее сокращение, преобразовав знаменатель при помощи формулы разности квадратов:
Ответ: .
По такому же принципу складываются или вычитаются три и более алгебраических дробей при одинаковых знаменателях. К примеру:
Действия сложения и вычитания при разных знаменателях
Вновь обратимся к схеме действий с обыкновенными дробями: чтобы выполнить сложение или вычитание обыкновенных дробей с разными знаменателями, необходимо привести их к общему знаменателю, а затем сложить полученные дроби с одинаковыми знаменателями.
К примеру, или .
Так же по аналогии сформулируем правило сложения и вычитания алгебраических дробей с разными знаменателями:
Чтобы осуществить сложение или вычитание алгебраических дробей с разными знаменателями, необходимо:
- исходные дроби привести к общему знаменателю;
- выполнить сложение или вычитание полученных дробей с одинаковыми знаменателями.
Очевидно, что ключевым здесь будет навык приведения алгебраических дробей к общему знаменателю. Разберем подробнее.
Приведение алгебраических дробей к общему знаменателю
Чтобы привести алгебраические дроби к общему знаменателю, необходимо осуществить тождественное преобразование заданных дробей, в результате которого знаменатели исходных дробей становятся одинаковыми. Здесь оптимально действовать по следующему алгоритму приведения алгебраических дробей к общему знаменателю:
- сначала определяем общий знаменатель алгебраических дробей;
- затем находим дополнительные множители для каждой из дробей, разделив общий знаменатель на знаменатели исходных дробей;
- последним действием числители и знаменатели заданных алгебраических дробей умножаются на соответствующие дополнительные множители.
Заданы алгебраические дроби: и . Необходимо привести их к общему знаменателю.
Решение
Действуем по указанному выше алгоритму. Определим общий знаменатель исходных дробей. С этой целью разложим знаменатели заданных дробей на множители: и . Отсюда можем записать общий знаменатель: .
Теперь нам предстоит найти дополнительные множители. Разделим, согласно алгоритму, найденный общий знаменатель на знаменатели исходных дробей:
- для первой дроби: ;
- для второй дроби:
- для третьей дроби: .
Следующий шаг - умножение числителей и знаменателей заданных дробей на найденные дополнительные множители:
Ответ:
Так, мы привели исходные дроби к общему знаменателю. В случае необходимости далее можно преобразовать полученный результат в вид алгебраических дробей, осуществив умножение многочленов и одночленов в числителях и знаменателях.
Уточним также такой момент: найденный общий знаменатель оптимально оставлять в виде произведения на случай необходимости сократить конечную дробь.
Мы рассмотрели подробно схему приведения исходных алгебраических дробей к общему знаменателю, теперь можем приступить к разбору примеров на сложение и вычитание дробей с разными знаменателями.
Заданы алгебраические дроби: и . Необходимо осуществить действие их сложения.
Решение
Исходные дроби имеют разные знаменатели, поэтому первым действием приведем их к общему знаменателю. Раскладываем знаменатели на множители: , а , т.к. корни квадратного трехчлена это числа: и . Определяем общий знаменатель: , тогда дополнительные множители будут: и для первой и второй дробей соответственно.
Таким образом: и
Теперь сложим дроби, которые мы привели к общему знаменателю:
Полученную дробь возможно сократить на общий множитель :
И, напоследок, полученный результат запишем в виде алгебраической дроби, заменив произведение в знаменателе многочленом:
Запишем ход решения кратко в виде цепочки равенств:
Ответ:
Обратите внимание еще на такую деталь: перед тем, как алгебраические дроби сложить или вычесть, при наличии возможности их желательно преобразовать с целью упрощения.
Необходимо осуществить вычитание дробей: и .
Решение
Преобразуем исходные алгебраические дроби для упрощения дальнейшего решения. Вынесем за скобки числовые коэффициенты переменных в знаменателе:
и
Данное преобразование однозначно дало нам пользу: мы явно видим наличие общего множителя.
Избавимся вообще от числовых коэффициентов в знаменателях. Для этого используем основное свойство алгебраических дробей: числитель и знаменатель первой дроби умножим на , а второй на , тогда получим:
и .
Совершим действие, которое нам позволит избавиться от дробных коэффициентов: умножим полученные дроби на :
и .
Наконец, выполним требуемое в условии задачи действие – вычитание:
Ответ: .
Сложение и вычитание алгебраической дроби и многочлена
Данное действие сводится также к сложению или вычитанию алгебраических дробей: необходимо представить исходный многочлен как дробь со знаменателем .
Необходимо произвести сложение многочлена с алгебраической дробью .
Решение
Запишем многочлен как алгебраическую дробь со знаменателем :
Теперь можем выполнить сложение по правилу сложения дробей с разными знаменателями:
Ответ: .