Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта
Данная статья разбирает такие действия с многочленами как сложение и вычитание многочленов. Сформулируем правило и рассмотрим его применение в решении задач.
Правило сложения и вычитания многочленов
Формулировку правила мы зададим сразу, после чего запишем пояснения.
Теперь дадим пояснения по каждому шагу озвученного алгоритма.
Чтобы записать сумму или разность многочленов, необходимо заданные многочлены заключить в скобки и между ними расположить знак плюс или минус соответственно. К примеру, сумма двух многочленов и запишется как , а их разность имеет вид .
Далее, согласно правилу, необходимо раскрыть скобки в полученном выражении: данное действие совершаем, опираясь на правило раскрытия скобок, перед которыми расположен знак плюси правило раскрытия скобок, перед которыми расположен знак минус. В приведенных выше примерах сумма многочленов после раскрытия скобок получит вид , а разность станет выглядеть так: . Мы явно видим, что в итоге получены многочлены.
Последним шагом алгоритма приведем многочлен к стандартному виду. Продолжая рассматриваемые примеры, получим: и .
Мы рассмотрели все действия согласно сформулированному правилу и можем указать важный вывод, что итогом сложения или вычитания является многочлен.
Примеры сложения и вычитания
Разберем типичные задачи на сложение и вычитание многочленов.
Одночлен – частный случай многочлена, поэтому правило сложения и вычитания, рассматриваемое в данной статье, применимо и для сложения и вычитания одночленов; для сложения и вычитания одночлена и многочлена и, наконец, для вычитания одночлена из многочлена и наоборот.
Исходные многочлены могут быть представлены как в стандартном, так и в нестандартном виде: действия сложения и вычитания могут совершаться и в том, и в том состоянии данных, на результат вычисления это никоим образом не повлияет. Единственное, чем могут отличаться результаты, полученные от сложения или вычитания многочленов нестандартного вида и многочленов в стандартном виде – это порядок следования членов многочлена-результата сложения или вычитания.
По такой же схеме, как во всех указанных примерах, производится сложение или вычитание трех и более многочленов.