Чтобы успешно решать задачи на дифференцирование, нужно уметь находить разные виды производных. Данная статья посвящена основным правилам дифференцирования, которые постоянно используются на практике. С помощью самого определения производной функции мы сформулируем доказательства всех этих правил и подробно рассмотрим несколько примеров, чтобы понять, как они применяются при решении задач.
Условимся заранее, что все функции f ( x ) и g ( x ) , упомянутые здесь, будем считать дифференцируемыми на промежутке x , иными словами, для любого x 0 = x ∈ X будет справедливо равенство f ' ( x ) = lim ∆ x → 0 ∆ f ( x ) ∆ x , g ' ( x ) = lim ∆ x → 0 ∆ g ( x ) ∆ x . Здесь ∆ f ( x ) = f ( x + ∆ x ) - f ( x ) , ∆ g ( x ) = g ( x + ∆ x ) - g ( x ) считаются приращениями указанных функций. Также это можно записать как f ( x + ∆ x ) = f ( x ) + ∆ f ( x ) , g ( x + ∆ x ) = g ( x ) + ∆ g ( x ) .
Определение 1
Сформулируем основные проблемы дифференцирования:
Как вынести постоянный множитель за знак производной.
Как вычислить производную суммы и производную разности.
Как вычислить производную произведения функций.
Как вычислить производную частного двух функций (дробного выражения с функциями).
Разберем все эти случаи по порядку.
C · f ( x ) ' = C · f ' ( x ) , C ∈ R ( f ( x ) ± g ( x ) ) ' = f ' ( x ) ± g ' ( x ) ( f ( x ) · g ( x ) ) ' = f ' ( x ) · g ( x ) + f ( x ) · g ' ( x ) f ( x ) g ( x ) ' = f ' ( x ) · g ( x ) - f ( x ) · g ' ( x ) g 2 ( x )
Как вынести постоянный множитель за знак производной
Определение 2
Для начала нам нужно доказать следующую формулу:
C · f ( x ) ' = C · f ' ( x ) , C ∈ R
Доказательство 1
Используя определение производной, запишем следующее:
C · f ( x ) ' = lim ∆ x → 0 ∆ ( C · f ( x ) ) ∆ x = lim ∆ x → 0 C · f ( x + ∆ x ) - C · f ( x ) ∆ x = = lim ∆ x → 0 C · f ( x + ∆ x ) - f ( x ) ∆ x = lim ∆ x → 0 C · ∆ f ( x ) ∆ x
Если в таком выражении у нас есть произвольный множитель, он может быть вынесен за знак предельного перехода (мы доказывали это утверждение, когда изучали свойства предела). Значит, C · f ( x ) ' = lim ∆ x → 0 C · ∆ f ( x ) ∆ x = C · lim ∆ x → 0 ∆ f ( x ) ∆ x = C · f ' ( x ) .
Этим мы доказали первое правило дифференцирования. Разберем задачу на его применение.
Пример 1
Дана функция y = 2 · cos x . Необходимо вычислить ее производную.
Решение
Обратимся к таблице производных для тригонометрических функций и выясним, что cos x ' = - sin x .
Вынесем множитель за знак производной и получим:
y ' = 2 · cos x ' = 2 · cos x ' = - 2 · sin x
Ответ: y ' = 2 · cos x ' = 2 · cos x ' = - 2 · sin x .
Это самый простой пример. На практике чаще всего приходится предварительно преобразовывать дифференцируемую функцию, чтобы увидеть нужное значение в таблице производных и применить соответствующее правило.
Пример 2
Продифференцировать функцию f ( x ) = log 3 x 2 - 1 .
Решение
Зная свойства логарифмической функции, мы можем сразу записать, что f ( x ) = log 3 x 2 - 1 = 2 - 1 · log 3 x . Теперь вспоминаем, как вычислить для нее производную, и выносим постоянный множитель:
f ( x ) = log 3 x 2 - 1 ' = 2 - 1 · log 3 x ' = = 2 - 1 · log 3 x ' = 2 - 1 x · ln 3
Ответ: f ( x ) = 2 - 1 x · ln 3
Пример 3
Дана функция y = 1 2 - x + 3 . Вычислите ее производную.
Решение
Сначала нам нужно выполнить преобразование исходной функции.
y = 1 2 - x + 3 = 1 2 - x · 2 3 = 2 x 2 3
Далее применяем изученное выше правило и берем из таблицы производных соответствующее значение:
y ' = 2 x 2 3 ' = 1 2 3 · 2 x ' = 1 2 3 · 2 x · ln 2 = 2 x - 3 · ln 2
Ответ: y ' = 2 x - 3 · ln 2
Как вычислить производную суммы и производную разности
Чтобы доказать второе правило дифференцирования f ( x ) ± g ( x ) ' = f ' ( x ) ± g ' ( x ) , нам нужно вспомнить определение производной, а также одно из свойств, которым обладает предел непрерывной функции.
Определение 3
f ( x ) ± g ( x ) ' = lim ∆ x → 0 ∆ ( f ( x ) ± g ( x ) ) ∆ x = = lim ∆ x → 0 f x + ∆ x ± g x + ∆ x - ( f ( x ) ± g ( x ) ) ∆ x = = lim ∆ x → 0 f ( x + ∆ x ) - f ( x ) ± ( g ( x + ∆ x ) - g ( x ) ) ∆ x = = lim ∆ x → 0 f ( x + ∆ x ) - f ( x ) ∆ x ± lim ∆ x → 0 g ( x + ∆ x ) - g ( x ) ∆ x = = lim ∆ x → 0 ∆ f ( x ) ∆ x ± lim ∆ x → 0 ∆ g ( x ) ∆ x = f ' ( x ) ± g ' ( x )
Доказательство 2
Так мы можем доказать равенство производной суммы или разности n-ного количества функций сумме или разности их производных:
f 1 ( x ) ± f 2 ( x ) ± . . . ± f n ( x ) ' = f 1 ' ( x ) ± f 2 ' ± . . . ± f n ' ( x )
Пример 4
Вычислить производную y = x 3 + 3 x + 1 - ln x ln 5 + 3 .
Решение
Первым делом упрощаем данную функцию.
y = x 3 + 3 x + 1 - ln x ln 5 + 3 = x 3 + 3 · 3 x - ln ( 5 + 3 ) · ln x
После этого применяем второе правило – производной суммы/разности:
y ' = ( x 3 ) ' + 3 · 3 x ' - ln 5 + 3 · ln x '
Первое правило говорит нам о том, что можно вынести постоянный множитель за знак производной, значит:
y ' = ( x 3 ) ' + 3 · 3 x ' - ln 5 + 3 · ln x ' = = ( x 3 ) ' + 3 · 3 x ' - ln ( 5 + 3 ) · ln x '
Нам остается только заглянуть в таблицу производных и взять оттуда соответствующее значение:
y ' = ( x 3 ) ' + 3 · 3 x ' - ln ( 5 + 3 ) · ln x ' = = 3 · x 3 - 1 + 3 · 3 x · ln 3 - ln 5 + 3 x = 3 · x 2 + 3 x + 1 · ln 3 - ln ( 5 + 3 ) x
Ответ: y ' = 3 · x 2 + 3 x + 1 · ln 3 - ln ( 5 + 3 ) x
Как вычислить производную произведения функций
Определение 4
Правило дифференцирования произведения двух функций выглядит следующим образом: f x · g ( x ) ' = f ' ( x ) · g ( x ) ' + f ( x ) · g ' ( x )
Попробуем доказать его.
Доказательство 3
Для начала вычислим предел отношения приращения произведения функций к приращению аргумента. Здесь нужно вспомнить, что f ( x + ∆ x ) = f ( x ) + ∆ f ( x ) , g ( x + ∆ x ) = g ( x ) + ∆ g ( x ) , а lim ∆ x → 0 ∆ g ( x ) = 0 , lim ∆ x → 0 ∆ f ( x ) = 0 , то есть если приращение аргумента стремится к 0 , то и приращение функции также будет к нему стремиться.
( f ( x ) · g ( x ) ) ' = lim ∆ x → 0 ∆ ( f ( x ) · g ( x ) ) ∆ x = lim ∆ x → 0 f ( x + ∆ x ) · g ( x + ∆ x ) - f ( x ) · g ( x ) ∆ x = = lim ∆ x → 0 ( f ( x ) + ∆ f ( x ) ) + ( g ( x ) · ∆ g ( x ) ) - f ( x ) · g ( x ) ∆ x = = lim ∆ x → 0 f ( x ) · g ( x ) + g ( x ) · ∆ f ( x ) + f ( x ) · ∆ g ( x ) + ∆ f ( x ) · ∆ g ( x ) - f ( x ) · g ( x ) ∆ x = = lim ∆ x → 0 g ( x ) · ∆ f ( x ) + f ( x ) · ∆ g ( x ) + ∆ f ( x ) · ∆ g ( x ) ∆ x = = lim ∆ x → 0 g ( x ) · ∆ f ( x ) ∆ x + lim ∆ x → 0 f ( x ) · ∆ g ∆ x + lim ∆ x → 0 ∆ f ( x ) ∆ x · lim ∆ x → 0 ∆ g ( x ) = = g ( x ) · lim ∆ x → 0 ∆ f ( x ) ∆ x + f ( x ) · lim ∆ x → 0 ∆ g ( x ) ∆ x + f ' ( x ) · 0 = = f ' ( x ) · g ( x ) + f ( x ) · g ' ( x )
Это и есть результат, который нам нужно было доказать.
Пример 5
Продифференцируйте функцию y = t g x · a r c sin x .
Решение
Здесь f ( x ) = t g x , g ( x ) = a r c sin x . Можем воспользоваться правилом производной произведения:
y ' = ( t g x · a r c sin x ) ' = ( t g x ) ' · a r c sin x + t g x · ( a r c sin x ) '
Берем нужное значение из таблицы производных основных элементарных функций и записываем ответ:
y ' = ( t g x · a r c sin x ) ' = ( t g x ) ' · a r c sin x + t g x · ( a r c sin x ) ' = = a r c sin x cos 2 x + t g x 1 - x 2
Ответ: y ' = a r c sin x cos 2 x + t g x 1 - x 2
Пример 6
Дана функция y = e x x 3 . Вычислите производную.
Решение
Здесь мы имеем f ( x ) = e x , g ( x ) = 1 x 3 = x - 1 3 . Значит,
y ' = e x x 3 = e x · x - 1 3 ' = e x ' · x - 1 3 + e x · x - 1 3 = = e x · x - 1 3 + e x · - 1 3 · x - 1 3 - 1 = e x x 3 - e x x 4 3 = e x x 3 · 1 - 1 x
Ответ: y ' = e x x 3 · 1 - 1 x
Теперь разберем, что нужно делать в случае, когда производную нужно найти для произведения трех функций. По той же схеме решаются задачи с произведениями четырех, пяти и большего количества функций.
Пример 7
Продифференцируйте функцию y = ( 1 + x ) · sin x · ln x .
Решение
Возьмем за основу правило для двух функций. Будем считать функцией f ( x ) произведение ( 1 + x ) · sin x , а g ( x ) – ln x .
У нас получится следующее:
y ' = ( ( 1 + x ) · sin x · ln x ) ' = 1 + x · sin x ' · ln x + 1 + x · sin x · ln x '
Чтобы найти 1 + x · sin x ' , нам снова потребуется правило вычисления производной произведения:
1 + x · sin x ' = ( 1 + x ) ' · sin x + 1 + x · ( sin x ) '
С помощью этого правила и таблицы производных получим:
1 + x · sin x ' = ( 1 + x ) ' · sin x + 1 + x · ( sin x ) ' = = 1 ' + x ' · sin x + ( 1 + x ) · cos x = 0 + 1 · x 1 - 1 · sin x + ( 1 + x ) · cos x = = ( 0 + 1 ) · sin x + 1 + x · cos x = sin x + cos x + x · cos x
Теперь подставим в формулу то, что у нас получилось:
y ' = 1 + x · sin x · ln x ' = 1 + x · sin x ' · ln x + ( 1 + x ) · sin x · ( ln x ) ' = = sin x + cos x + x · cos x · ln x + ( 1 + x ) · sin x x
Ответ: y ' = sin x + cos x + x · cos x · ln x + ( 1 + x ) · sin x x
Из этого примера видно, что иногда приходится применять несколько правил дифференцирования подряд для вычисления нужного результата. Это не так сложно, как кажется, главное – соблюдать нужную последовательность действий.
Пример 8
Дана функция y = 2 · s h x - 2 x · a r c t g x , вычислите ее производную.
Решение
Исходная функция является разностью выражений 2 · s h x и 2 x · a r c t g x , значит, y ' = 2 · s h x - 2 x · a r c t g x ' = 2 · s h x ' - 2 x · a r c t g x ' . Здесь можно вынести за знак производной число 2 , а в другом произведении применить подходящее для произведений правило:
y ' = 2 · s h x ' - 2 x · a r c t g x ' = 2 · s h x ' - 2 x ' · a r c t g x + 2 x · ( a r c t g x ) ' = = 2 · c h x - 2 x · ln 2 · a r c t g x + 2 x 1 + x 2 = 2 · c h x - 2 x · ln 2 · a r c t g x - 2 x 1 + x 2
Ответ: y ' = 2 · c h x - 2 x · ln 2 · a r c t g x - 2 x 1 + x 2
Как вычислить производную частного двух функций (дробного выражения с функциями)
Определение 5
Данное правило выглядит следующим образом: f ( x ) g ( x ) ' = f ' ( x ) · g ( x ) - f ( x ) · g ' ( x ) g 2 ( x ) .
Докажем его.
Доказательство 4
Сразу отметим, что g ( x ) не будет обращаться в 0 ни при каких значениях x из указанного промежутка. Согласно определению производной, получим:
f ( x ) g ( x ) ' = = lim ∆ x → 0 ∆ f ( x ) g ( x ) ∆ x = lim ∆ x → 0 f ( x + ∆ x ) g ( x + ∆ x ) - f ( x ) g ( x ) ∆ x = lim ∆ x → 0 f ( x + ∆ x ) · g ( x ) - g ( x + ∆ x ) · f ( x ) ∆ x · g ( x + ∆ x ) · g ( x ) = = 1 g 2 ( x ) · lim ∆ x → 0 ( f ( x ) + ∆ f ( x ) ) · g ( x ) - ( g ( x ) + ∆ g ( x ) ) · f ( x ) ∆ x = = 1 g 2 ( x ) · lim ∆ x → 0 f ( x ) · g ( x ) + g ( x ) · ∆ f ( x ) - f ( x ) · g ( x ) - f ( x ) · ∆ g ( x ) ∆ x = = 1 g 2 ( x ) · lim ∆ x → 0 g x · ∆ f ( x ) - f ( x ) · ∆ g ( x ) ∆ x = = 1 g 2 ( x ) · g ( x ) · lim ∆ x → 0 ∆ f ( x ) ∆ x - f ( x ) · lim ∆ x → 0 ∆ g ( x ) ∆ x = = f ' ( x ) · g ( x ) - f ( x ) · g ' ( x ) g 2 ( x )
Пример 9
Продифференцируйте функцию y = sin x 2 · x + 1 .
Решение
Эта функция является отношением двух выражений 2 x + 1 и sin x . Воспользуемся приведенным выше правилом дифференцирования дробного выражения и получим:
y ' = sin x 2 · x + 1 ' = sin x ' · 2 · x + 1 - sin x · 2 · x + 1 ' 2 · x + 1 2
После этого нам потребуется правило для суммы, а также правило вынесения постоянного множителя за знак производной:
y ' = sin x ' · 2 · x + 1 - sin x · 2 · x + 1 ' 2 · x + 1 2 = = cos x · ( 2 · x + 1 ) - sin x · 2 x ' + 1 ' ( 2 · x + 1 ) 2 = cos x · ( 2 · x + 1 ) - sin x · ( 2 · x ' + 0 ) ( 2 · x + 1 ) 2 = = cos x · 2 · x + 1 - sin x · ( 2 · 1 · x 1 - 1 + 0 ) ( 2 · x + 1 ) 2 = 2 · x · cos x + cos x - 2 · sin x ( 2 · x + 1 ) 2
Ответ: y ' = 2 · x · cos x + cos x - 2 · sin x ( 2 · x + 1 ) 2
Возьмем задачу на применение всех изученных правил.
Пример 10
Дана функция y = 3 e x - x 2 · ln x - 2 · x a x + 2 sin x · a r c cos x , где значение undefined является положительным действительным числом. Вычислите производную.
Решение
y ' = 3 · e x ' - x 2 · ln x - 2 · x a x ' + 2 sin x · a r c cos x '
Поясним, как это получилось.
Первым слагаемым будет 3 · e x ' = 3 · e x ' = 3 · e x .
Вычисляем второе:
x 2 · ln x - 2 · x a x ' = x 2 · ln x - 2 · x · a x - x 2 · ln x - 2 · x · a x ' a x 2 = = x 2 · ln x ' - 2 · x ' · a x - x 2 · ln x - 2 · x · a x · ln a a 2 · x = = 2 · x 2 - 1 · ln x + x 2 · 1 x - 2 · 1 · x 1 - 1 · a x - x 2 · ln x - 2 · x · a x · ln a a 2 · x = = 2 · x 2 - 1 · ln x + x 2 · 1 x - 2 · 1 · x 1 - 1 · a x - x 2 · ln x - 2 · x · a x · ln a a 2 · x = = 2 · x · ln x + x - 2 · a x - x 2 · ln x - 2 · x · a x · ln a a 2 · x = = x · ln x · ( 2 - x · ln a ) + x · 1 - 2 · ln a - 2 a x
Вычисляем третье слагаемое:
2 sin x · a r c cos x ' = 2 · sin x · a r c cos x ' = = 2 · sin x ' · a r c cos x + sin x · a r c cos x ' = = 2 · cos x · a r c cos x - sin x 1 - x 2
Теперь собираем все, что у нас получилось:
y ' = 3 · e x ' - x 2 · ln x - 2 · x a x + 2 sin x · a r c cos x ' = = 3 · e x - x · ln x · ( 2 - x · ln a ) + x · 1 - 2 · ln a - 2 a x + + 2 · cos x · a r c cos x - sin x 1 - x 2
В задачах, которые мы разобрали в этой статье, использовались только основные элементарные функции, которые были связаны между собой знаками простых арифметических действий. Они нагляднее всего иллюстрируют правила дифференцирования. Однако возможно их применение и к более сложным функциям.
После того, как мы разберем, что такое производная сложной функции, мы сможете проводить дифференцирование выражений любой сложности.