Статью подготовили специалисты образовательного сервиса Zaochnik
Числовые, буквенные выражения и выражения с переменными: определения, примеры
- 30 марта 2023
- 6 минут
- 1 493
В математике принято использовать свои обозначения. Запись условий задач с их помощью приводит к появлению так называемых математических выражений. Можно говорить про числовые, буквенные выражения и математические выражения с переменными. Для удобства и одни, и вторые и третьи называются просто выражениями. В этой статье мы дадим определения и по порядку рассмотрим каждый тип математических выражений.
Числовые выражения
С самый первых уроков математики школьники начинают знакомство с числовыми выражениями. Выражение содержит числа, и действия над этими числами. Возьмем простейшие примеры для счета: 5+2; 3-8; 1+1. Все это - числовые выражения. Если выполнить действия, указанные в выражении, то получится его значение.
Конечно, числовые выражения содержат не только знаки "плюс" и "минус". Они могут включать деление и умножение, содержать скобки, степени, корни, логарифмы и состоять из нескольких действий.
Учитывая все сказанное, дадим определение. Что такое числовое выражение?
Числовые выражения - это комбинация чисел, арифметических действий, знаков дробных черт, корней, логарифмов, тригонометрических и других функций, а также скобок и иных математических символов.
Числовым выражением считается только та комбинация, которая составлена с учетом математических правил.
Поясним данное определение.
Во-первых, числа. Математическое выражение может содержать любые числа. Это значит, что в математическом выражении можно встретить:
- натуральные числа: 6, 173, 9,
- целые числа: 18, 0, 64,
- рациональные числа:
обыкновенные дроби 13, 34,
смешанные числа 618, 8957,
периодические и непериодические десятичные дроби 9,78, 8,(556) - иррациональные числа: π, e,
- комплексные числа: i=√-1.
Во-вторых, арифметические действия. то известные нам еще из курса начальной школы сложение, умножение, вычитание и деление. Знаки "+", "-", "·" и "÷" могут присутствовать в выражении не один раз. Вот пример такого числового выражения: 12+4-3+3÷1·8·6÷2.
деление в выражениях может присутствовать как в виде знака, так и в виде дробной черты.
Скобки в числовых выражениях
- указывают порядок выполнения действий: 5-(2,5+5*0,25);
- используются для записи отрицательных чисел: 5+(-2);
- отделяют аргумент функции: sin(π2-π3);
- отделяют показатель степени: (2-1,3)2
Есть и специальные значения для записи скобок. Например, запись open1,75]+2 означает, что к целой части числа open1,75]прибавляется число 2.
Согласно определению, числовые выражения могут содержать степени, корни, логарифмы, тригонометрические и обратные тригонометрическим функции. Приведем пример такого числового выражения:
В качестве примера использования в числовых выражениях специальных знаков, можно привести знак модуля.
open(-225)·6+open-5-8|·2|
Буквенные выражения
После знакомства с числовыми выражениями можно вводить понятие буквенных выражений. Интуитивно понятно, что в них вместо чисел используются буквы. Но обо всем по порядку.
Запишем числовое выражение, но вместо одного числа оставим пустой квадратик.
3+□
В квадратик мы можем вписать любое число. Например, 2, или 1032.
3+2; 3+1032.
Если условится записывать вместо числа в квадратике букву a, означающую данное число, то мы получим буквенное выражение:
3+a
Выражение, в котором буквы заменяняют некоторые цифры, называется буквенным выражением. Буквенное выражение должно содержать по крайней мере одну букву.
Принципиальная разница числового и буквенного выражений в том, что первое не может содержать букв. В буквенных выражениях чаще всего используются маленькие буквы латинского алфавита a, b, c.. или маленькие греческие буквы α, β, γ.. и т.д.
Приведем пример сложного буквенного выражения.
(√x3+2-4)·(x5+4xy+8y2)38-4x2·arccosα+13x2+2y-1
Выражения с переменными
В рассмотренных выше буквенных выражениях буква обозначала какое-то конкретное числовое значение. Величина, которая может принимать ряд различных значений, называется переменной. Выражение с такой величиной, соответственно, называются выражением с переменной.
Выражение с переменной - выражение, в котором все или некоторые буквы обозначают величины, принимающие различные значения.
Пусть переменная x принимает натуральные значения из интервала от 0 до 10. Тогда выражения x2-1 есть выражение с переменной, а x - переменная в этом выражении.
В выражении может быть не одна, а несколько переменных. Например, при переменных x и yвыражение x3·y+y22-1 представляет собой выражение с двумя переменными.
Вообще буквенные выражения и выражения с переменными позволяют посмотреть на задачу вне контекста конкретных чисел, то есть более широко. Они широко используются в математическом анализе для формулировок и доказательств.
Внешний вид буквенного выражения не позволяет узнать, являются входящие в него буквы переменными, или нет. Для этого нужно знать условия конкретной задачи, описываемой выражением. Вне контекста ничто не мешает считать входящие в выражение буквы переменными. Таким образом, разница между понятиями "буквенное выражение" и "выражение с переменными" нивелируется.
Сохранить статью удобным способом