Статью подготовили специалисты образовательного сервиса Zaochnik.
Группировка слагаемых и множителей: правило, примеры
Содержание:
- 20 июня 2023
- 5 минут
- 422
В случае, если нам надо сложить три и более слагаемых, мы можем использовать метод тождественного преобразования, получивший название группировки слагаемых. Точно такой же метод существует и для умножения, если в примере заданы три множителя и больше. Целью этой статьи является разбор правил группировки в обоих случаях. Все теоретические положения будут проиллюстрированы примерами решений задач.
Что такое группировка слагаемых
Мы можем выполнять группировку как в буквенных, так и в числовых выражениях тогда, когда у нас есть слагаемых и более. Как нужно понимать этот термин?
Группировка слагаемых основана на совместном рассмотрении нескольких слагаемых в исходной сумме. Иначе говоря, это объединение нескольких слагаемых в одну группу.
Основное правило группировки слагаемых звучит так:
На чем базируется данное правило? В его основе лежат переместительное и сочетательное свойство сложения.
Разберем несколько примеров.
Возьмем пример чуть сложнее.
Точно так же мы действуем, если вместо числового выражения задано выражение с переменными. Так, если в условии стоит сумма вида , то можно сделать группировку сначала всех слагаемых с , а потом всех с . В итоге у нас получится выражение вида .
В целом группировка слагаемых– несложное действие. Некоторая трудность может быть в том, чтобы найти в исходном выражении саму сумму и отдельные слагаемые, из которых она состоит, особенно если выражение длинное и громоздкое. После нахождения слагаемых сгруппировать их будет легко.
Метод группировки необходим для рационального вычисления значений выражений. Кроме того, он широко используется для упрощения и многих других задач разной степени сложности.
Например, если нам надо найти значение выражения , то удобно будет воспользоваться группировкой и объединить дроби с одинаковыми знаменателями. Так вычисление станет проще и быстрее:
Один из способов разложения многочлена на отдельные множители также основан на группировке слагаемых.
Что такое группировка множителей
Такая группировка проводится точно таким же образом, как и при сложении, единственная разница в том, что работать предстоит не с суммами, а с произведениями. Она основана на переместительном и сочетательном свойствах умножения.
Процесс вычисления в данном случае проводится так же: сначала мы переставляем нужные множители так, чтобы они оказались рядом, а потом расставляем скобки.
Навигация по статьям