Статью подготовили специалисты образовательного сервиса Zaochnik.
Наименьший общий знаменатель (НОЗ) алгебраических дробей, его нахождение
- 14 декабря 2023
- 10 минут
- 1 664
Большинство действий с алгебраическими дробями, такие, например, как сложение и вычитание, требуют предварительного приведения этих дробей к одинаковым знаменателям. Такие знаменатели также часто обозначаются словосочетанием «общий знаменатель». В данной теме мы рассмотрим определение понятий «общий знаменатель алгебраических дробей» и «наименьший общий знаменатель алгебраических дробей (НОЗ)», рассмотрим по пунктам алгоритм нахождения общего знаменателя и решим несколько задач по теме.
Общий знаменатель алгебраических дробей
Если говорить про обыкновенные дроби, то общим знаменателем является такое число, которое делится на любой из знаменателей исходных дробей. Для обыкновенных дробей и число может быть общим знаменателем, так как без остатка делится на и на .
Общий знаменатель алгебраических дробей определяется похожим образом, только вместо чисел используются многочлены, так как именно они стоят в числителях и знаменателях алгебраической дроби.
В связи с особенностями алгебраических дробей, речь о которых пойдет ниже, мы чаще будем иметь дело с общими знаменателями, представленными в виде произведения, а не в виде стандартного многочлена.
Наименьший общий знаменатель (НОЗ)
Для заданных алгебраических дробей количество общих знаменателей может быть бесконечное множество.
При решении задач можно облегчить себе работу, используя общий знаменатель, который среди всего множества знаменателей имеет самый простой вид. Такой знаменатель часто обозначается как наименьший общий знаменатель.
К слову, термин «наименьший общий знаменатель» не является общепризнанным, потому лучше ограничиваться термином «общий знаменатель». И вот почему.
Ранее мы сфокусировали ваше внимание на фразе «знаменатель самого простого вида». Основной смысл этой фразы следующий: на знаменатель самого простого вида должен без остатка делиться любой другой общий знаменатель данных в условии задачи алгебраических дробей. При этом в произведении, которое является общим знаменателем дробей, можно использовать различные числовые коэффициенты.
Нахождение общего знаменателя алгебраических дробей: алгоритм действий
Предположим, что у нас имеется несколько алгебраических дробей, для которых нам необходимо отыскать общий знаменатель. Для решения этой задачи мы можем использовать следующий алгоритм действий. Сначала нам необходимо разложить на множители знаменатели исходных дробей. Затем мы составляем произведение, в которое последовательно включаем:
- все множители из знаменателя первой дроби вместе со степенями;
- все множители, присутствующие в знаменателе второй дроби, но которых нет в записанном произведении или их степень недостаточно;
- все недостающие множители из знаменателя третьей дроби, и так далее.
Полученное произведение и будет общим знаменателем алгебраических дробей.
В качестве множителей произведения мы можем взять все знаменатели дробей, данных в условии задачи. Однако множитель, который мы получим в итоге, по смыслу будет далек от НОЗ и использование его будет иррациональным.
Теперь рассмотрим примеры задач, когда в знаменателях алгебраических дробей есть целые числовые множители. В таких случаях мы также действуем по алгоритму, предварительно разложив целые числовые множители на простые множители.
Если внимательно посмотреть на результаты двух разобранных примеров, то можно заметить, что общие знаменатели дробей содержат все множители, присутствующие в разложениях знаменателей, причем если некоторый множитель имеется в нескольких знаменателях, то он берется с наибольшим из имеющихся показателей степени. А если в знаменателях имеются целые коэффициенты, то в общем знаменателе присутствует числовой множитель, равный наименьшему общему кратному этих числовых коэффициентов.
Теперь мы можем записать еще один алгоритм нахождения общего множителя алгебраических дробей. Для этого мы:
- раскладываем знаменатели всех дробей на множители;
- составляем произведение всех буквенных множителей (при наличии множителя в нескольких разложениях, берем вариант с наибольшим показателем степени);
- добавляем НОК числовых коэффициентов разложений к полученному произведению.
Приведенные алгоритмы равноценны, так что использовать в решении задач можно любой из них. Важно уделять внимание деталям.
Встречаются случаи, когда общие множители в знаменателях дробей могут быть незаметны за числовыми коэффициентами. Здесь целесообразно сначала вынести числовые коэффициенты при старших степенях переменных за скобки в каждом из множителей, имеющихся в знаменателе.
Данные в условии задачи дроби могут иметь дробные коэффициенты. В этих случаях необходимо сначала избавиться от дробных коэффициентов путем умножения числителя и знаменателя на некоторое число.