Статью подготовили специалисты образовательного сервиса Zaochnik
Определение одночлена: сопутствующие понятия, примеры
- 3 января 2024
- 6 минут
- 2 111
Одночлены являются одним из основных видов выражений, изучаемых в рамках школьного курса алгебры. В этом материале мы расскажем, что это за выражения, определим их стандартный вид и покажем примеры, а также разберемся с сопутствующими понятиями, такими как степень одночлена и его коэффициент.
Что такое одночлен
В школьных учебниках обычно дается следующее определение этого понятия:
К одночленам относятся числа, переменные, а также их степени с натуральным показателем и разные виды произведений, составленные из них.
Исходя из этого определения, мы можем привести примеры таких выражений. Так, все числа 2, 8, 3004, 0, -4, -6, 0,78, 14, -437 будут относиться к одночленам. Все переменные, например, x ,a, b, p, q, t, y, z тоже будут по определению одночленами. Сюда же можно отнести степени переменных и чисел, например, 63, (−7,41)7, x2 и t15, а также выражения вида 65·x, 9·(−7)·x·y3·6, x·x·y3·x·y2·z и т.д. Обратите внимание, что в состав одночлена может входить как одно число или переменная, так и несколько, причем они могут быть упомянуты несколько раз в составе одного многочлена.
Такие виды чисел, как целые, рациональные, натуральные тоже относятся к одночленам. Также сюда можно включить действительные и комплексные числа. Так, выражения вида (2+3·i)·x·z4, √2·x, 2·π·x3 тоже будут одночленами.
Что такое стандартный вид одночлена и как привести выражение к нему
Для удобства работы все одночлены сначала приводят к особому виду, называемому стандартным. Сформулируем конкретно, что же это значит.
Стандартным видом одночлена называют такой его вид, в которой он представляет из себя произведение числового множителя и натуральных степеней разных переменных. Числовой множитель, также называемый коэффициентом одночлена, обычно записывают первым с левой стороны.
Для наглядности подберем несколько одночленов стандартного вида: 6 (это одночлен без переменных), 4·a, −9·x2·y3 , 235·x7. Сюда же можно отнести выражение x·y (здесь коэффициент будет равен 1), −x3 (тут коэффициент равен -1).
Теперь приведем примеры одночленов, которые нужно привести к стандартному виду: 4·a·a2·a3 (здесь нужно объединить одинаковые переменные), 5·x·(−1)·3·y2 (тут нужно объединить слева числовые множители).
Обычно в случае, когда одночлен имеет несколько переменных, записанных буквами, буквенные множители записывают в алфавитном порядке. Например, предпочтительнее запись 6·a·b4·c·z2, чем b4·6·a·z2·c. Однако порядок может быть и другим, если этого требует цель вычисления.
Привести к стандартному виду можно любой одночлен. Для этого нужно выполнить все необходимые тождественные преобразования.
Понятие степени одночлена
Очень важным является сопутствующее понятие степени одночлена. Запишем определение данного понятия.
Степенью одночлена, записанного в стандартном виде, является сумма показателей степеней всех переменных, которые входят в его запись. Если ни одной переменной в нем нет, а сам одночлен отличен от 0, то его степень будет нулевой.
Сам нуль принято считать одночленом с неопределенной степенью.
Приведем примеры степеней одночлена.
Так, одночлен a имеет степень, равную 1, поскольку a= a1 . Если у нас есть одночлен 7,то он будет иметь нулевую степень, поскольку в нем нет переменных и он отличен от 0. А вот запись 7·a2·x·y3·a2 будет одночленом 8-й степени, ведь сумма показателей всех степеней переменных, включенных в него, будет равна 8: 2+1+3+2=8.
Одночлен, приведенный к стандартному виду, и исходный многочлен будут иметь одинаковую степень.
Покажем, как подсчитать степень одночлена 3·x2·y3·x·(−2)·x5·y. В стандартном виде его можно записать как −6·x8·y4 . Вычисляем степень: 8+4=12. Значит, степень исходного многочлена также равна 12.
Понятие коэффициента одночлена
Если у нас есть одночлен, приведенный к стандартному виду, который включает в себя хотя бы одну переменную, то мы говорим о нем как о произведении с одним числовым множителем. Этот множитель называют числовым коэффициентом, или коэффициентом одночлена. Запишем определение.
Коэффициентом одночлена называют числовой множитель одночлена, приведенного к стандартному виду.
Возьмем для примера коэффициенты различных одночленов.
Так, в выражении 8·a3 коэффициентом будет число 8, а в (−2,3)·x·y·zим будет −2,3.
Особое внимание надо уделить коэффициентам, равным единице и минус единице. Как правило, в явном виде их не указывают. Считается, что в одночлене стандартного вида, в котором нет числового множителя, коэффициент равен 1, например, в выражениях a, x·z3, a·t·x, поскольку их можно рассматривать как как 1·a, x·z3 – как 1·x·z3 и т.д.
Точно так же в одночленах, в которых нет числового множителя и которые начинаются со знака минус, мы можем считать коэффициентом -1.
Например, такой коэффициент будет у выражений −x, −x3·y·z3 , поскольку они могут быть представлены как −x=(−1)·x, −x3·y·z3=(−1)·x3·y·z3 и т.д.
Если у одночлена вообще нет ни одного буквенного множителя, то говорить о коэффициенте можно и в этом случае. Коэффициентами таких одночленов-чисел будут сами эти числа. Так, например, коэффициент одночлена 9 будет равен 9.
Сохранить статью удобным способом