Материалы, подготовленные в результате оказания услуги, помогают разобраться в теме и собрать нужную информацию, но не заменяют готовое решение.

Преобразование рациональных (алгебраических) дробей: виды преобразований, примеры

Статью подготовили специалисты образовательного сервиса Zaochnik.

Содержание:

Виды выражений из алгебры могут принимать вид рациональных дробей, которые характерны тождественным преобразованиям этих дробей. Чаще всего можно встретить еще одно название алгебраические дроби. Таким образом, понятия рациональных и алгебраических дробей равнозначны.

Рассмотрим приведение рациональной дроби к новому знаменателю, смене знаков, сокращению. Подробно остановимся на преобразовании дробей в виде суммы с несколькими показателями. В заключении приведем несколько примеров,  в которых подробно рассмотрим решения.

Определение и примеры рациональных дробей

Определение 1

Рациональная дробь – это дробь,в числителе и знаменателе которой, имеются многочлены с натуральными, целыми и рациональными коэффициентами.

Многочлены могут быть приведены в нестандартном виде, что говорит о том, что необходимы дополнительные преобразования.

Рассмотрим примеры рациональных дробей.

Замечание 1

 считаются рациональными дробями.

А  и  не являются таковыми, так как не имеют выражений с многочленами.

Преобразования числителя и знаменателя рациональной дроби

Числитель и знаменатель считаются самодостаточными числовыми выражениями. Отсюда следует, что  с ними можно производить  различные преобразования, то есть в числителе или знаменателе разрешено заменять на тождественное равное ему выражение.

Чтобы провести тождественные преобразования, необходимо группировать и приводить подобные слагаемые, причем знаменатель заменять на более простое подобное ему выражение. Числители и знаменатели содержат многочлены, значит, что  с ними можно производить преобразования, подобные для многочленов. Это могут быть и приведения к стандартному виду или представление в виде произведения.

Пример 1

Преобразовать  таким образом, чтобы числитель получил стандартный вид многочлена, а знаменатель – их произведение.

Решение

Для начала необходимо привести к стандартному виду. Применим свойство степени, получим выражение вида

Необходимо выполнить преобразования знаменателя. Представляем его в виде произведения, то есть раскладываем на многочлены. Для этого производим группировку первого и третьего слагаемых, а второго с четвертым. Общий множитель выносим за скобки и получаем выражение вида

Видно, что полученное выражение имеет общий множитель, который и необходимо вынести за скобки, чтобы получить

Теперь подходим к произведению многочленов.

Проведя преобразования, получаем, что заданная дробь принимает вид .

Ответ:  .

Данные преобразования необходимы для их использования  в преобразованиях.

Приведение к новому знаменателю

При изучении обыкновенных дробей знакомимся с основным свойством дроби, которое говорит о том, что при умножении числителя и знаменателя на любое натуральное число, получаем равную предыдущей дробь. Данное свойство распространяется и на рациональные дроби: при умножении на ненулевой многочлен числитель и знаменатель, получим дробь, равную предыдущей.

Для любых многочленов  и , где   и  являются ненулевыми, равенство вида  справедливо, тогда они являются тождеством. К примеру,  является справедливым для всей ОДЗ переменных  и .

Отсюда следует то, что при решении необходимо воспользоваться приведением рациональной дроби к новому знаменателю. То есть ее умножение и числителя и знаменателя на ненулевой многочлен. В результате получим дробь, равную заданной.

Если рассмотреть такой пример рациональной дроби вида , то при приведении к новому знаменателю, получим новую, но равную предыдущей. Необходимо умножить числитель и  знаменатель на выражение , тогда имеем, что выражение   при помощи преобразования примет вид рациональной дроби . Такие приведения используются для сложения или вычитания дробей. Углубить знания можно  в разделе приведения алгебраических дробей к новому знаменателю.

Изменение знаков перед дробью, в ее числителе и знаменателе

Основное свойство дроби применяется для того, чтобы можно было сменить знаки у членов дроби. Эти преобразования характерны для рациональных дробей.

Определение 2

При одновременном изменении знаков у числителя и знаменателя получаем дробь, равную заданной. Это утверждение запишем так .

Рассмотрим пример.

Замечание 2

Дробь вида  заменяют равной ей .

Определение 3

При работе с дробями можно менять знак только в числителе или только в знаменателе. При замене знака дроби, получаем тождественно равную дробь. Запишем это утверждение так:

 и .

Доказательство

Для доказательства используется первое свойство. Получаем, что .

При помощи преобразований доказывается равенство вида .

Замечание 3

К примеру,  заменяем  или .

Существуют два полезных равенства вида  и . Отсюда замечаем, что при изменении знака в числителе или только в знаменателе, изменится знак дроби. Получаем,  и .

Чаще всего такие преобразования подходят для дробно рациональных выражений и их преобразований.

Сокращение рациональных дробей

Основа преобразования – это свойство дроби.  То есть применяется , где имеем, что  и  являются некоторыми многочленами, где  и  – нулевые.

Пример 2

Сократить дробь .

Решение

Заметим, что  является общим множителем, значит необходимо сократить на него выражение. Получим, что .  Видно, что   и , тогда  – это общий множитель. После сокращения получим, что .  Сокращение выполняется последовательно, что позволяет получать точные ответы .

Ответ: .

Не всегда виден общий знаменатель при сокращении. Это и есть небольшая проблема. Не всегда это возможно увидеть сразу. Возможно, необходимо будет выполнить разложение числителя и знаменателя на множители. Это упростит решение. Подробно нюансы рассмотрены в теме сокращения алгебраических дробей.

При сокращении важно обратить внимание на то, что чаще всего необходимо раскладывать и числитель и знаменатель на множители.

Представление рациональной дроби в виде суммы дробей

Если имеется несколько дробей, то преобразование производится особым образом. Такую рациональную дробь необходимо представить в виде выражения, где имеются одночлены.

Замечание 4

К примеру, .

Это основано на правиле сложения и вычитания дробей с одинаковыми знаменателями.

Любая рациональная дробь представляется в виде суммы дробей разными способами. Запишем это в виде утверждения . Если  представлять в виде суммы дробей, тогда получаем выражения вида

 и так далее.

В особую группу выделяют представления рациональных дробей с одной переменной. Когда показатель такой дроби больше или равен степени показателя знаменателя, тогда переходим к преобразованию суммы рационального выражения. То есть выполняется деления многочлена на многочлен.

Пример 3

Какие значения n являются целым числом дроби ?

Решение

Необходимо представить исходную дробь в виде суммы выражений и дроби. После деления числителя и знаменателя, получим выражение вида . Отсюда видно, что  при  любом  будет целым числом. А дробь  принимает целые значения при  и .

Ответ: .

Математические онлайн-калькуляторы

Навигация по статьям

Выполненные работы по математике

  • Математика

    Линейная алгебра и геометрия Теория вероятностей

    • Вид работы:

      Контрольная работа

    • Выполнена:

      17 мая 2012

    • Стоимость:

      600 руб.

    Заказать такую же работу
  • Математика

    теория вероятности

    • Вид работы:

      Контрольная работа

    • Выполнена:

      16 апреля 2012

    • Стоимость:

      500 руб.

    Заказать такую же работу
  • Математика

    теория вероятности

    • Вид работы:

      Контрольная работа

    • Выполнена:

      16 апреля 2012

    • Стоимость:

      500 руб.

    Заказать такую же работу
  • Математика

    исследование функции и построение графика

    • Вид работы:

      Контрольная работа

    • Выполнена:

      27 марта 2012

    • Стоимость:

      200 руб.

    Заказать такую же работу
  • Математика

    две контрольных работы

    • Вид работы:

      Контрольная работа

    • Выполнена:

      25 января 2012

    • Стоимость:

      1 100 руб.

    Заказать такую же работу
  • Математика

    контрольная работа

    • Вид работы:

      Контрольная работа

    • Выполнена:

      24 января 2012

    • Стоимость:

      700 руб.

    Заказать такую же работу